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Abstract: Specificity of a possibility distribution is akin to the 

entropy of a probability distribution. It serves an essential purpose 

to zero in on the maximum probability observation. However, 

when we discuss the existing definition of possibility distribution, 

it lacks applicability in real-world problems; hence, specificity also 

becomes an underrated measure for gauging the degree of 

uncertainty in a possibility distribution. In this paper, we present 

new findings on the specificity of a possibility distribution, 

resulting from our research on data-based semantic information 

analysis in hybrid human-machine systems. In this research, we 

propose a new frequency-based possibility and probability 

measure and formalise a new method for fitting restrictions on 

data or information available in the system. We will demonstrate 

that the proposed formula is superior to existing specificity 

measures and discuss various applications of specificity measures 

in solving problems related to hybrid systems. We shall summarise 

this paper by providing a real-world application of the proposed 

measure. 

Keywords: Possibility Distribution, Restriction, Specificity, 

Hybrid System, Semantic Information 

I. INTRODUCTION

Specificity is a key concept in possibility distribution

theory, much like entropy is in probability distributions. The 

idea of specificity is deeply rooted in possibility theory. 

Specificity of a possibility distribution represents the degree 

to which a possibility distribution points to a single 

observation. In possibility theory, a possibility 

distribution (denoted by π) assigns to each possible world or 

state a degree of possibility ranging from 0 (impossible) to 1 

(fully possible). The specificity of a possibility distribution 

measures how sharply it distinguishes between possible and 

impossible states—i.e., how "precise" or "informative" it 

is.  A possibility distribution is specific if it rules out as many 

states as possible, assigning high possibility (close to 1) to a 

few states and low possibility (close to 0) to the rest. 

Conversely, a non-specific (or less specific) distribution 

spreads the possibility more widely, leaving many states as 

plausible. For example, a possibilility distribution of winning 

probability {India = 1.0, Australia = 0.5, New Zealand = 0.3, 
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England = 0.2} is more specific, and {India = 0.8, Australia = 

0.8, New Zealand = 0.5, England = 0.5}is less specific. 

II. SPECIFICITY MEASURES

Yager [1] proposed the idea of the specificity of a fuzzy set, 

which is defined by a function𝑆𝑝: 𝑋 → [0,1] , having the 

following properties -   

1. ∀𝐴 ⊂ 𝑋, 𝑆𝑝(𝐴) ∈ [0,1].
2. 𝑆𝑝(𝐴) = 1 ⇔ 𝐴 is a singleton set in 𝑋.

3. 𝑆𝑝(𝜙) = 0.

4. For 𝐴, 𝐵 ⊂ 𝑋, such that 𝐴 ⊆ 𝐵𝑆𝑝(𝐴) ≥ 𝑆𝑝(𝐵).

5. Specificity of a set increases if the maximum

membership grade increases, and decreases when

any other membership grade increases.

When 𝑋  is finite, Yager proposed the following

formula for the specificity measure 

𝑆𝑝(𝐴) = ∫

𝛼̅

0

1

𝐶𝑎𝑟𝑑(𝐴𝛼)
𝑑𝛼  …   (1) 

where, 𝛼̅ = max𝑥∈𝑋𝜇𝐴(𝑥) , 𝐴𝛼 = {𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ≥ 𝛼} , and

𝐶𝑎𝑟𝑑(𝐴𝛼) denotes the cardinality of 𝐴𝛼. Yager also defined

a new class of specificity measure by the following formula – 

𝑆𝑝(𝐴) = 𝑤1𝛼1 −
1

𝑛 − 1
∑

𝑛

𝑗=2

𝑤𝑗𝛼𝑗   …   (2)

where 𝛼𝑖 is the decreasing set of possibility grades, with 𝛼1

is the most significant possibility.Also 𝑤𝑗  are weights

satisfying the following conditions -   

1. 𝑤𝑗 ∈ [0,1]

2. 𝑤1 = 1
3. 𝑤𝑖 ≥ 𝑤𝑗  if 𝑖 ≤ 𝑗

4. for all 𝑛 ≥ 2, ∑𝑛
𝑗=2 𝑤𝑗 ≤ 1

In [2], Dubois and Prade defined the following formulae for 

the specificity of a normalized fuzzy set 𝐴, provided that all 𝑛 

elements of 𝑋 are arranged in decreasing values of 𝜇𝐴 and

𝜇𝐴(𝑥𝑛+1) = 0,

𝑆𝑝(𝐴) = ∑

𝑛

𝑖=1

1

𝑖
{𝜇𝐴(𝑥𝑖) − 𝜇𝐴(𝑥𝑖+1)  …   (3)

Dubois and Prade also proved a one-to-one correspondence 

between probability and possibility distribution by following 

a pair of transforms.  

𝜋𝑋(𝑥) = ∑

𝑥′∈𝑋

min(𝑝𝑋(𝑥′), 𝑝𝑋(𝑥))  …   (4)

 and its inverse - 

Some Results on Specificity of Possibility 

Distributions 
Jayesh V. Karanjgaonkar 

https://doi.org/10.54105/ijam.B1206.05021025
http://www.ijam.latticescipub.com/
mailto:drjayeshk1303@gmail.com
https://orcid.org/0009-0000-3894-366X
https://www.openaccess.nl/en/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijam.B1206.05021025&domain=www.ijam.latticescipub.com


 

Some Results on Specificity of Possibility Distributions 

2 

Retrieval Number:100.1/ijam.B120605021025 
DOI: 10.54105/ijam.B1206.05021025 

Journal Website: www.ijam.latticescipub.com  

Published By: 

Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

𝑝𝑋(𝑥𝑖) = ∑

𝑛

𝑗=𝑖

1

𝑗
(𝜋𝑋(𝑥𝑗) − 𝜋𝑋(𝑥𝑗+1)), 

for 𝑖 = 1,2, . . . 𝑛 (5) 

  

The specificity of any set 𝐴  of 𝑋  can be seen as the 

probability of the element which has the most significant 

membership degree in the above sense of transforms, i.e. 

𝑆𝑝(𝐴) is the probability, computed by 𝜋𝑋  using the above 

equations for the most possible values of 𝑥. However, the 

above formulations do not support continuous data analysis, 

as they require arranging the data in decreasing order of 

membership grades. Hence, we propose a change in the 

formulae for the specificity measure by removing the 

precondition of placing the data set.  

III. RELATING INFORMATION, POSSIBILITY AND 

SPECIFICITY 

Possibility conveys two meanings- (i)A physical meaning - 

Ease to achieve an outcome. and (ii) An epistemic meaning - 

Logically consistent with available information. Zadeh was 

the advocate of physical sense, which is reflected in the 

condition of maximality for the possibility measure 

𝑃𝑜𝑠𝑠(𝐴 ∪ 𝐵) = max{𝑃𝑜𝑠𝑠(𝐴), 𝑃𝑜𝑠𝑠(𝐵)}  where 𝐴  and 𝐵 

are disjoint sets [3].  

The degree of ease of some decision or action which 

produces the results 𝐴 or 𝐵 is given by the easiest of the two 

decisions 𝐴 or 𝐵. This idea is reflected in preferences, i.e., 

when we consider two mutually exclusive alternatives, the 

one that is most feasible (in any given sense) is usually 

preferred. The epistemic point of view is practical when 

incomplete information is present for a decision. Suppose 𝑈 

be a set of discourses and 𝑥 be some variable, suppose 𝑥 ∈ 𝐸, 

be the piece of information available, since 𝐸 is a non-empty, 

non-singleton set, hence it contains more elements and thus 𝐸 

has more uncertainty about the actual value of 𝑥, as it can be 

any value (but only one value) from 𝐸.In this line of thought, 

we can define a possibility measure by 

Π𝐸(𝐴) = {
1 if𝐴 ∪ 𝐸 ≠ 𝜙
0 otherwise

 

 i.e. Π𝐸(𝐴) = 1 implies that 𝑥 ∈ 𝐴 whenever 𝑥 ∈ 𝐸 (because 

𝐴 ∪ 𝐸 ≠ 𝜙 ), similarly Π𝐸(𝐴) = 0  implies that 𝑥 ∉ 𝐴 

whenever 𝑥 ∈ 𝐸.  

The following are two scenarios attached to a possibility 

distribution -   

A. Complete Knowledge - Suppose 𝐸 = 𝑢0, for some 

𝑢0, then Π𝐸(𝐴) = 𝑁𝐸(𝐴) = 1, iff𝑢0 ∈ 𝐴 i.e., there is 

one and only one event that is possible and certain.  

B. Complete Ignorance - If 𝐸 = 𝑈, then for each 𝐴 ≠

𝜙, Π𝐸(𝐴) = 1 and for each 𝐴 ≠ 𝑈, 𝑁𝐸(𝐴) = 0, i.e. 

everything is possible and nothing is specific.  

 Any kind of data collection for a semantic information-based 

decision problem has two essential characteristics [4] -   

    1. Specificity, which provides an interval estimate for the 

data set. An extensive set is less specific (more uncertain) 

but better for approximation.  

    2.  Entailment principle, we can always predict a larger set 

than the actual fuzzy set. If 𝑥 ∈ 𝐴 and 𝐴 ⊂ 𝐹 ⊂ 𝐺, then we 

can predict the set 𝐺 with more accuracy than set 𝐹.  

 For example, "today is a hot day” can be translated as an 

interval of values of a variable temperature. The set can be 

large (less specific), hence there will be a higher chance of 

representing a hot day. However, as the number of 

observations increases, more and more frequencies will 

become equal, and the set will become uniformly distributed, 

making it impossible to select any particular value.  

When we reduce the number of observations, the set 

becomes more specific. Still, there is a chance that the values 

do not accurately represent the correct temperature to qualify 

as hot. Thus, a large set is better for prediction; i.e., lowering 

specificity increases the chance of choosing the proper values 

of the variable. However, this characteristic works against 

Maximum specificity, because enlarging the prediction set 

will reduce the specificity of the estimation. In approximate 

reasoning with possibilistic distributions, we must work 

against both of the above theories. We have to predict the 

correct value with maximum specificity. In statistics, the 

theory of sampling errors operates on the same basic 

principle, based on probability distributions. 

IV. A NEW FORMULATION FOR POSSIBILITY 

Our work in semantic information analysis for a hybrid 

man-machine system follows a modified version of Zadeh’s 

Information Principle [5]. The basic methodology followed 

in this process is that the data observed by the machine 

sub-part is converted into a normalised possibility 

distribution, which is then used in decision-making, 

prediction, and description of the system. For the analysis of 

any stream of data, we focus on the mode frequency because 

it is the most probable and most likely frequency in any 

sample [6]. Suppose 𝑋 = {𝑥1, 𝑥2, 𝑥3. . . 𝑥𝑛}  be the set of 

observations or values of the decision variable. Let 𝐹 =

{𝑓1, 𝑓2, 𝑓3. . . 𝑓𝑛} be the respective frequencies. Together 𝑋 and 

𝐹 constitutes our version of explanatory database or ED [6]. 

Suppose that the ED is uni-modular and the mode 

observation, frequency pair is denoted by (𝑥𝑀, 𝑓𝑀). It is also 

assumed that the mode frequency is much higher than other 

frequencies. The probability measure, termed natural 

probability, 𝑃: (𝑋, 𝐹) → [0,1] by –  

 

𝑃(𝑥𝑖) =
𝑓𝑖

𝑁
 (6) 

  

Next, we define the possibility measure, termed natural 

possibility, 𝜋𝑀: (𝑋, 𝐹) → [0,1] by –  

 

𝜋𝑀(𝑥𝑖) =
𝑓𝑖

𝑓𝑀
 (7) 

 

 Natural possibility distribution defined by 4.2 converts the 

ED. (𝑋, 𝐹) into a possibility distribution, given the condition 

of a unique higher mode. We have also defined a probability 

measure to complement the possibility measure, as well as a 

proximity value measure. The following table denotes 

various measures defined to approximate the distribution into 

an optimal possibility 

distribution [6]. 
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Table-I: Various Measures for Possibilistic Analysis, 

where 𝑵 = ∑𝒏
𝒊=𝟏 𝒇𝒊 and 𝑵̅ = 𝑵 − 𝒇𝑴. 

Measure Formula 

Natural Probability (P) 𝑃(𝑥𝑖) =
𝑓𝑖

𝑁
 

Natural Possibility(πM) 𝜋𝑀(𝑥𝑖) =
𝑓𝑖

𝑓𝑀

 

Proximity Value (PV) ∑

𝑛

𝑖=1

𝜋𝑀(𝑥𝑖) − ∑

𝑛

𝑖=1

𝑃(𝑥𝑖) =
𝑁̅

𝑓𝑀

 

Elemental Proximity 

Value (EPV) 
𝜋𝑀(𝑥𝑖) − 𝑃(𝑥𝑖) = (

𝑁̅

𝑁𝑓𝑀

)𝑓𝑖 

Mode Proximity (MPV) 𝜋𝑀(𝑥𝑀) − 𝑃(𝑥𝑀) =
𝑁̅

𝑁
 

Probability-Possibility 

Consistency Principle 
𝛾 =

1

𝑁𝑓𝑀

∑

𝑛

𝑖=1

𝑓𝑖
2 

Probability to Possibility 

conversion 
𝜋𝑀(𝑥𝑖) =

𝑃(𝑥𝑖)

𝑃(𝑥𝑀)
 

Possibility to Probability 

conversion 
𝑃(𝑥𝑖) =

𝜋𝑀(𝑥𝑖)

∑𝑛
𝑖=1 𝜋𝑀(𝑥𝑖)

 

 

V. PROPOSING NEW FORMULAE FOR 

SPECIFICITY 

We shall use natural possibility and probability as the input 

in the following formula defined by Yager [1]  

 

𝑆𝑝(𝐴) = 𝑤1𝛼1 −
1

𝑛−1
∑𝑛

𝑗=2 𝑤𝑗𝛼𝑗 (8) 

  

where 𝑤𝑖 ∈ (0,1) are weights with 𝑤1 = 1 and decreasing 

values as 𝑖  increases.The 𝛼1  is the most significant 

possibility. We replace the respective weights 𝑤𝑖  by 

probability values 𝑃(𝑥𝑖) and we define 𝛼𝑗 = 𝜋𝑀(𝑥𝑗), with 

𝛼1 = 𝜋𝑀(𝑥𝑀) = 1 (most significant possibility). Using our 

defined measure of natural possibility, the specificity 

becomes -  

𝑆𝑝(𝑋) = 𝑃(𝑥𝑀)𝜋𝑀(𝑥𝑀) −
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

𝑃(𝑥𝑗)𝜋𝑀(𝑥𝑗) 

 =
𝑓𝑀

𝑁

𝑓𝑀

𝑓𝑀
−

1

𝑛−1
∑𝑓𝑗≠𝑓𝑀

𝑓𝑗

𝑁

𝑓𝑗

𝑓𝑀
 

 𝑆𝑝(𝑋) =
𝑓𝑀

𝑁
−

1

𝑛−1
∑𝑓𝑗≠𝑓𝑀

𝑓𝑗
2

𝑁𝑓𝑀
           (9) (5.2) 

   

Above formula defines the specificity of the explanatory 

database (𝑋, 𝐹)through natural possibilities and probability 

distributions. We have replaced the weights 𝑤𝑖  by the 

probability of each element 𝑃(𝑥𝑖), save 𝑤1 , which is not 

equal to 1 but takes the value of the mode probability, i.e. 

𝑃(𝑥𝑚), so as ∑𝑛
𝑗=2 𝑤𝑗 ≤ 1The departure from the formula of 

specificity defined by Yager is that it can be applied to any 

frequency-based setting. Here, the maximum specificity will 

be 1 only when 𝑓𝑀 = 𝑁 , and every other 𝑓𝑗 = 0 . As the 

uniformity increases in the sample (non-modal frequencies 

increase, keeping the sum of frequencies 𝑁 and the number 

of observations 𝑛 fixed), the specificity decreases. It reaches 

zero when –  

𝑆𝑝(𝑋) = 0 =
𝑓𝑀

𝑁
−

1

𝑛 − 1
∑

𝑓𝑗≠𝑓𝑀

(
𝑓𝑗

2

𝑁𝑓𝑀
) 

𝑓𝑀

𝑁
=

1

𝑛 − 1
∑

𝑓𝑗≠𝑓𝑀

𝑓𝑗
2

𝑁𝑓𝑀
 

 =
1

𝑛−1
[

𝑓1
2

𝑁𝑓𝑚
+

𝑓2
2

𝑁𝑓𝑚
+. . .

𝑓𝑛
2

𝑁𝑓𝑚
] 

𝑓𝑀

𝑁
=

1

(𝑛 − 1)𝑁
[
𝑓1

2

𝑓𝑚
+

𝑓2
2

𝑓𝑚
+. . .

𝑓𝑛
2

𝑓𝑚
] 

 1 =
1

𝑛−1
[[

𝑓1

𝑓𝑚
]

2

+ [
𝑓2

𝑓𝑚
]

2

+. . . [
𝑓𝑛

𝑓𝑚
]

2

] 

𝑓𝑀

𝑓𝑀
=

1

𝑛 − 1
[[𝜋𝑀(𝑥1)]2 + [𝜋𝑀(𝑥2)]2+. . . [𝜋𝑀(𝑥𝑛)]2] 

[
𝑓𝑀

𝑓𝑀
]

2

= [𝜋𝑀(𝑥𝑀)]2 

=
1

𝑛 − 1
[[𝜋𝑀(𝑥1)]2 + [𝜋𝑀(𝑥2)]2+. . . [𝜋𝑀(𝑥𝑛)]2] 

[𝜋𝑀(𝑥𝑀)]2 =
1

𝑛−1
∑𝑥𝑗≠𝑥𝑀

[𝜋𝑀(𝑥𝑗)]
2
 (10) 

 The above equation provides the limiting values of the sum 

of squared possibilities, so that the specificity of a member of 

ED becomes zero. Since [𝜋𝑀(𝑥𝑀)] = 1 hence we get  

 

 ∑𝑥𝑗≠𝑥𝑀
[𝜋𝑀(𝑥𝑗)]

2
= 𝑛 − 1 (11) 

 

 This provides another condition for zero specificity. Here, 

the frequency distribution (𝑋, 𝐹)  is not a uniform 

distribution, but a non-specific one, i.e., the mode frequency 

constitutes one portion of the distribution, and the remaining 

frequencies constitute the reduced portion of the possibility 

distribution. Recall that the sum of the squared possibilities 

of a uniform distribution will be 𝑛 ,, the i.e. number of 

observations, the above equation provides a condition of zero 

specificity, by limiting the squared reduced sum to 𝑛 − 1 

Also, since we can put 𝑃(𝑥𝑖) =
𝜋𝑀(𝑥𝑖)

∑𝑛
𝑖=1 𝜋𝑀(𝑥𝑖)

, we get  

[𝜋𝑀(𝑥𝑀)]2 =
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

[𝜋𝑀(𝑥𝑗)]
2
 

[𝜋𝑀(𝑥𝑀)]2 =
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

[
𝑓𝑗

𝑓𝑀

]

2

 

[𝜋𝑀(𝑥𝑀)]2 =
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

[
𝑓𝑗

𝑓𝑀

×
𝑁

𝑁
]

2

 

[𝜋𝑀(𝑥𝑀)]2 =
1

𝑛 − 1
(

𝑁

𝑓𝑀

)
2

∑

𝑥𝑗≠𝑥𝑀

[
𝑓𝑗

𝑁
]

2

 

[𝜋𝑀(𝑥𝑀)]2 × (
𝑓𝑚

𝑁
)

2

=
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

[
𝑓𝑗

𝑁
]

2

 

 Putting 𝜋𝑀(𝑥𝑀) = 1, 
𝑓𝑗

𝑁
= 𝑃(𝑥𝑗) and

𝑓𝑚

𝑁
= 𝑃(𝑥𝑀) , we get  

 (𝑃(𝑥𝑀))2 =
1

𝑛−1
∑𝑥𝑗≠𝑥𝑀

[𝑃(𝑥𝑗)]
2
 (5.5) 

 which provides an analogous formula for values of 

probability at zero specificity. In  

case of a uniform distribution,  

i.e. 𝜋𝑀(𝑥𝑖) = 1  
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and 𝑃𝑀(𝑥𝑖) =
1

𝑛
, using formulae 5, we get -  

𝑆𝑝(𝑋) = 𝑃(𝑥𝑀)𝜋𝑀(𝑥𝑀) −
1

𝑛 − 1
∑

𝑥𝑗≠𝑥𝑀

𝑃(𝑥𝑗)𝜋𝑀(𝑥𝑗) 

 =
1

𝑛
× 1 −

1

𝑛−1
∑𝑓𝑗≠𝑓𝑀

1

𝑛
 

 =
1

𝑛
−

1

𝑛−1
×

𝑛−1

𝑛
 

 = 0 

Thus, for a uniform distribution, the above-defined 

specificity measure 5 becomes zero, i.e., there is no 

specificity for a uniform distribution. Hence, in our 

formulation, the specificity of the possibility distribution can 

be zero when ∑𝑥𝑗≠𝑥𝑀
[𝜋𝑀(𝑥𝑗)]

2
= 𝑛 − 1 or the distribution 

is uniform. Since the natural possibility distribution is 

defined based on the unique mode, we shall use the criterion 

of reduced squared sum in our decision process. 

VI. EXAMPLE OF TEMPERATURE OF A DAY 

We have taken a natural language statement Today is a hot 

day. The resulting possibilistic restriction is (as based on 

context) temperature (𝑋) is Hot (𝑅), where 𝑋 is a set of real 

numbers and 𝑅 is a fuzzy set. The membership grades denote 

the possibility distribution for the day's temperature. We shall 

convert this problem into a decision problem for a hybrid 

system. Suppose a machine must decide on an ambient 

temperature based on natural language statements from 

human communication. Consider the data shown in the 

following table- 

Table-II: Temperature of Month June 2024 

Max. Temp. Days Min. Temp. Days 

27 1 23 10 

28 5 24 6 

29 3 25 2 

30 3 26 6 

31 2 27 5 

32 2 28 1 

33 3   

34 1   

35 3   

36 1   

37 3   

38 2   

39 1   
 

The above frequency distribution satisfies the requirement 

of a unique high mode. Hence, using the Natural Possibility 

Measure, defined by 𝜋𝑀(𝑥𝑖) =
𝑓𝑖

𝑓𝑀
 and Natural Probability 

Measure, defined by 𝑃(𝑥𝑖) =
𝑓𝑖

𝑁
, we get the following tables-  

Table-III: Characteristic Calculation 

Max. Temp. 
𝐓 𝐅 𝛑𝐌 𝐏 EPV EPV 
27 1 0.2 0.03 0.17 0.17 
28 5 1 0.17 0.83 0.83 
29 3 0.6 0.1 0.5 0.5 
30 3 0.6 0.1 0.5 0.5 
31 2 0.4 0.07 0.33 0.33 
32 2 0.4 0.07 0.33 0.33 
33 3 0.6 0.1 0.5 0.5 
34 1 0.2 0.03 0.17 0.17 
35 3 0.6 0.1 0.5 0.5 
36 1 0.2 0.03 0.17 0.17 
37 3 0.6 0.1 0.5 0.5 
38 2 0.4 0.07 0.33 0.33 
39 1 0.2 0.03 0.17 0.17 

Min. Temp. 
𝐓 𝐅 𝛑𝐌 𝐏 EPV 
23 10 1 0.33 0.67 
24 6 0.6 0.20 0.40 
25 2 0.2 0.07 0.13 
26 6 0.6 0.20 0.40 
27 5 0.5 0.17 0.33 

28 1 0.1 0.03 0.07 

 

From the above table, the characteristic values of the above 

distribution are -   

Table-IV: Characteristics of Distribution 

Characteristic Max. Temp. Value Min. Temp. Value 

MPV 0.83 0.67 

PV 5.0 2.0 

Average  TR = 34∘C with 

EPV = 0.17 
TR = 25∘C with 

EPV = 0.13 
Specificity 0.1328 0.2653 

VII. RESULT 

In the above example, we have shown a fundamental 

calculation of instantiation and precisiation of a possibility 

distribution. It is clear that -   

    • The maximum temperature group has more observation, 

however they occur in similar frequencies. On the other hand, 

the minimum temperature group has fewer observations, but 

they appear at different frequencies.  

    • Similarly, the minimum temperature group is more 

specific than the maximum temperature group, because the 

number of distinct observations is less in the minimum 

temperature group. temperature group, and the mode 

frequency is higher in mini. temperature group. 

VIII. CONCLUSION 

As is clear from the above example, constructing a 

possibility distribution using context variables and 

calculating various characteristics is straightforward and can 

be applied to multiple data settings. Similarly, the calculation 

of specificity does not require a specific arrangement of 

frequency or probability distribution; therefore, it can be 

applied to many more situations involving continuous data 

streams or fixed datasets. Our formulation of specificity is 

less restrictive but efficient in the application of various 

possible scenarios. 
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