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Some Results on Specificity of Possibility

Distributions

Jayesh V. Karanjgaonkar

Abstract: Specificity of a possibility distribution is akin to the
entropy of a probability distribution. It serves an essential purpose
to zero in on the maximum probability observation. However,
when we discuss the existing definition of possibility distribution,
it lacks applicability in real-world problems; hence, specificity also
becomes an underrated measure for gauging the degree of
uncertainty in a possibility distribution. In this paper, we present
new findings on the specificity of a possibility distribution,
resulting from our research on data-based semantic information
analysis in hybrid human-machine systems. In this research, we
propose a new frequency-based possibility and probability
measure and formalise a new method for fitting restrictions on
data or information available in the system. We will demonstrate
that the proposed formula is superior to existing specificity
measures and discuss various applications of specificity measures
in solving problems related to hybrid systems. We shall summarise
this paper by providing a real-world application of the proposed
measure.
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I. INTRODUCTION

Speciﬁcity is a key concept in possibility distribution
theory, much like entropy is in probability distributions. The
idea of specificity is deeply rooted in possibility theory.
Specificity of a possibility distribution represents the degree
to which a possibility distribution points to a single
observation. In possibility theory, a possibility
distribution (denoted by =) assigns to each possible world or
state a degree of possibility ranging from 0 (impossible) to 1
(fully possible). The specificity of a possibility distribution
measures how sharply it distinguishes between possible and
impossible states—i.e., how "precise" or "informative" it
is. A possibility distribution is specific if it rules out as many
states as possible, assigning high possibility (close to 1) to a
few states and low possibility (close to 0) to the rest.
Conversely, a non-specific (or less specific) distribution
spreads the possibility more widely, leaving many states as
plausible. For example, a possibilility distribution of winning
probability {India = 1.0, Australia = 0.5, New Zealand = 0.3,
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England = 0.2} is more specific, and {India = 0.8, Australia =
0.8, New Zealand = 0.5, England = 0.5} is less specific.

II. SPECIFICITY MEASURES

Yager [1] proposed the idea of the specificity of a fuzzy set,
which is defined by a functionSp: X — [0,1] , having the
following properties -

1. VA c X,Sp(A) € [0,1].

. Sp(4) = 1 © Aisasingleton set in X.

. Sp(¢) = 0.

. For A,B c X, such that A € BSp(A) = Sp(B).

. Specificity of a set increases if the maximum
membership grade increases, and decreases when
any other membership grade increases.

When X is finite, Yager proposed the following
formula for the specificity measure

roo
Sp(A) = Of Card(a) da ..
where, & = max,extis(x), Ay = {x € X, uy(x) = a}, and

Card(A,) denotes the cardinality of A,. Yager also defined

a new class of specificity measure by the following formula —

W W N

ey

n
1
Sp(A) = wya, —mz wia; .. (2)
j=2

where «; is the decreasing set of possibility grades, with a4
is the most significant possibility.Also w; are weights
satisfying the following conditions -

1. w; €0,1]

2.w =1

wpzwiifi<j

4. foralln=2,%%, w; <1

In [2], Dubois and Prade defined the following formulae for

the specificity of a normalized fuzzy set A, provided that all n
elements of X are arranged in decreasing values of p, and

Ha(Xn+1) = 0,
- 1
S = ) T la ) = aisn) o (3)

Dubois and Prade also proved a one-to-one correspondence
between probability and possibility distribution by following
a pair of transforms.

m(@) = ) min(py(),pr(0) . (4)
and its inverse - o
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n
1
px(x;) Z 7 T[X(xj) - ”X(xj+1))'
j=i
fori=1,2,...n %)

The specificity of any set A of X can be seen as the
probability of the element which has the most significant
membership degree in the above sense of transforms, i.e.
Sp(A) is the probability, computed by my using the above
equations for the most possible values of x. However, the
above formulations do not support continuous data analysis,
as they require arranging the data in decreasing order of
membership grades. Hence, we propose a change in the
formulae for the specificity measure by removing the
precondition of placing the data set.

III. RELATING INFORMATION, POSSIBILITY AND
SPECIFICITY

Possibility conveys two meanings- (1)A physical meaning -
Ease to achieve an outcome. and (ii) An epistemic meaning -
Logically consistent with available information. Zadeh was
the advocate of physical sense, which is reflected in the
condition of maximality for the possibility measure
Poss(A U B) = max{Poss(A), Poss(B)} where A and B
are disjoint sets [3].

The degree of ease of some decision or action which
produces the results A or B is given by the easiest of the two
decisions A or B. This idea is reflected in preferences, i.c.,
when we consider two mutually exclusive alternatives, the
one that is most feasible (in any given sense) is usually
preferred. The epistemic point of view is practical when
incomplete information is present for a decision. Suppose U
be a set of discourses and x be some variable, suppose x € E,
be the piece of information available, since E is a non-empty,
non-singleton set, hence it contains more elements and thus E
has more uncertainty about the actual value of x, as it can be
any value (but only one value) from E'In this line of thought,
we can define a possibility measure by

_ (1 fAVUE #¢
My (4) = {0 otherwise
i.e. [Iz(A) = 1 implies that x € A whenever x € E (because

AUE # ¢ ), similarly [Iz(A) =0 implies that x € A
whenever x € E.
The following are two scenarios attached to a possibility
distribution -
A. Complete Knowledge - Suppose E = u,, for some
Uy, then [z (A) = Ng(4) = 1, iffuy € A i.e., there is
one and only one event that is possible and certain.
B. Complete Ignorance - If E = U, then for each 4 #
¢, Iz(A) = 1 and for each A # U, N;(4) = 0, i.e.
everything is possible and nothing is specific.
Any kind of data collection for a semantic information-based
decision problem has two essential characteristics [4] -
1. Specificity, which provides an interval estimate for the
data set. An extensive set is less specific (more uncertain)
but better for approximation.
2. Entailment principle, we can always predict a larger set
than the actual fuzzy set. f x € A and A € F c G, then we
can predict the set ¢ with more accuracy than set F.
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For example, "today is a hot day” can be translated as an
interval of values of a variable temperature. The set can be
large (less specific), hence there will be a higher chance of
representing a hot day. However, as the number of
observations increases, more and more frequencies will
become equal, and the set will become uniformly distributed,
making it impossible to select any particular value.

When we reduce the number of observations, the set
becomes more specific. Still, there is a chance that the values
do not accurately represent the correct temperature to qualify
as hot. Thus, a large set is better for prediction; i.e., lowering
specificity increases the chance of choosing the proper values
of the variable. However, this characteristic works against
Maximum specificity, because enlarging the prediction set
will reduce the specificity of the estimation. In approximate
reasoning with possibilistic distributions, we must work
against both of the above theories. We have to predict the
correct value with maximum specificity. In statistics, the
theory of sampling errors operates on the same basic
principle, based on probability distributions.

IV. ANEW FORMULATION FOR POSSIBILITY

Our work in semantic information analysis for a hybrid
man-machine system follows a modified version of Zadeh’s
Information Principle [5]. The basic methodology followed
in this process is that the data observed by the machine
sub-part is into a normalised possibility
distribution, which is then used in decision-making,
prediction, and description of the system. For the analysis of
any stream of data, we focus on the mode frequency because
it is the most probable and most likely frequency in any
.Xp} be the set of
observations or values of the decision variable. Let F =

{flle)f3"

F constitutes our version of explanatory database or ED [6].

converted

sample [6]. Suppose X = {x;,x,, X3..
. f»} be the respective frequencies. Together X and
Suppose that the ED is uni-modular and the mode

observation, frequency pair is denoted by (x,, fi)- It is also
assumed that the mode frequency is much higher than other

frequencies. The probability measure, termed natural
probability, P: (X,F) - [0,1] by —
fi
Px) =4 ()
Next, we define the possibility measure, termed natural
possibility, Ty (X, F) = [0,1] by —
_ fi
Ty (x) = (7)

'm

Natural possibility distribution defined by 4.2 converts the
ED. (X, F) into a possibility distribution, given the condition
of a unique higher mode. We have also defined a probability
measure to complement the possibility measure, as well as a
proximity value measure. The following table denotes
various measures defined to approximate the distribution into
an optimal possibility
distribution [6].
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Table-I: Various Measures for Possibilistic Analysis,
where N =YY", fiand N = N — f,,.

Measure Formula
Natural Probability (P) P(x) = ﬁ
. ﬁ

Natural Possibility(1y;) my(x;) = f
M

n

N
ORWIOEES

i=1

n
Proximity Value (PV) z

i=1

7"

Elemental Proximity

Value (EPV) Ty (%) = P(x) = (

N
Ty (Xy) — P(xXn) = N

1 n
Y =—Z 2
N im1

Mode Proximity (MPV)

Probability-Possibility
Consistency Principle

Probability to Possibility (%) = P(x;)
conversion MY Paay)
Possibility to Probability P(x) = T (X;)
conversion ' =1 T (%)

V. PROPOSING NEW FORMULAE FOR
SPECIFICITY

We shall use natural possibility and probability as the input
in the following formula defined by Yager [1]
Sp(A) = wya, — 37, wie ®)
where w; € (0,1) are weights with w; = 1 and decreasing
values as i increases.The a; is the most significant
possibility. We replace the respective weights w; by
probability values P(x;) and we define a; = my(x;), with
ay; = my(xy) = 1 (most significant possibility). Using our
defined measure of natural possibility, the specificity
becomes -

1
SPOO = PG Cn) = —= > PO ()

inxM
_fmfm _ Z fiti
N fu n-1 fJ’EfMNfM2
f.
Sp(X) =Iu_ 1ij¢fM m ©

Above formula defines the specificity of the explanatory
database (X, F)through natural possibilities and probability
distributions. We have replaced the weights w; by the
probability of each element P(x;), save w;, which is not
equal to 1 but takes the value of the mode probability, i.e.
P(xy,), so as }Y.j_, w; < 1The departure from the formula of
specificity defined by Yager is that it can be applied to any
frequency-based setting. Here, the maximum specificity will
be 1 only when fy, = N, and every other f; = 0. As the
uniformity increases in the sample (non-modal frequencies
increase, keeping the sum of frequencies N and the number
of observations n fixed), the specificity decreases. It reaches

zero when —
n—1 Z (NfM>

spe=0="0_
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fu_ 1 NS
N =1 Ly Ny
_ 1[5 13
= il * e ]
fu 1 [fRR fn]
N G-DNfm fn e
_ 1 1Ay L 1x fa]?
=Sl 2]
B )P + )+ i)
2
M)~ [ )P
i (7w ()12 + [mrag (e2) 12+ [0 () 12
LEMICEES W | W e (10)

The above equation provides the limiting values of the sum
of squared possibilities, so that the specificity of a member of
ED becomes zero. Since [, (xy)] = 1 hence we get

Sajor [ ()] =n=1 (D
This provides another condition for zero specificity. Here,
the frequency distribution (X,F) not a uniform
distribution, but a non-specific one, i.e., the mode frequency
constitutes one portion of the distribution, and the remaining
frequencies constitute the reduced portion of the possibility
distribution. Recall that the sum of the squared possibilities
of a uniform distribution will be n,, the i.e. number of
observations, the above equation provides a condition of zero
specificity, by limiting the squared reduced sumton — 1

Also, since we can put P(x.) = ng—(xl()) we get
[ (a2 Z [0 ()]’
xjixM
[ Can)]? = — z [f,]
e 62)
[T[M(xM) -1 Z [fM N
XjEAM
[ G = i 1 <fM) ]

Putting my, (xy) = 1, j;v—’ = P(x;) and%m = P(xy) , we get

(Pa))? = == B exyy [PO]°

which provides an analogous formula for values of
probability at zero specificity. In
case of a uniform distribution,
re.my(x) =1
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and Py (x;) = %, using formulae 5, we get -

1
SPO) = PCan)w () = —= > Py ()

Xj#EXM
1 1 1
=—-X 1 —_ i -
n n—lzf}ifM n
_1 1 n-1
T n n-1 n
=0

Thus, for a uniform distribution, the above-defined
specificity measure 5 becomes zero, i.e., there is no
specificity for a uniform distribution. Hence, in our
formulation, the specificity of the possibility distribution can

2 N
be zero when ij¢XM [nM (xj)] = n — 1 or the distribution

is uniform. Since the natural possibility distribution is
defined based on the unique mode, we shall use the criterion
of reduced squared sum in our decision process.

VI. EXAMPLE OF TEMPERATURE OF A DAY

We have taken a natural language statement Today is a hot
day. The resulting possibilistic restriction is (as based on
context) temperature (X) is Hot (R), where X is a set of real
numbers and R is a fuzzy set. The membership grades denote
the possibility distribution for the day's temperature. We shall
convert this problem into a decision problem for a hybrid
system. Suppose a machine must decide on an ambient
temperature based on natural language statements from
human communication. Consider the data shown in the
following table-

Table-II: Temperature of Month June 2024

Max. Temp. Days Min. Temp. Days
27 1 23 10
28 5 24 6
29 3 25 2
30 3 26 6
31 2 27 5
32 2 28 1
33 3
34 1
35 3
36 1
37 3
38 2
39 1

The above frequency distribution satisfies the requirement
of a unique high mode. Hence, using the Natural Possibility

Measure, defined by my(x;) = % and Natural Probability
M

Measure, defined by P(x;) = %, we get the following tables-
Table-III: Characteristic Calculation
Max. Temp.

T | F | my P EPV | EPV
27 1 0.2 0.03 0.17 0.17
28 5 1 0.17 0.83 0.83
29 3 0.6 0.1 0.5 0.5
30 3 0.6 0.1 0.5 0.5
31 2 0.4 0.07 0.33 0.33
32 2 0.4 0.07 0.33 0.33
33 3 0.6 0.1 0.5 0.5
34 1 0.2 0.03 0.17 0.17
35 3 0.6 0.1 0.5 0.5
36 1 0.2 0.03 0.17 0.17
37 3 0.6 0.1 0.5 0.5
38 2 0.4 0.07 0.33 0.33
39 1 0.2 0.03 0.17 0.17
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Min. Temp.
T F Ty P EPV
23 10 1 0.33 0.67
24 6 0.6 0.20 0.40
25 2 0.2 0.07 0.13
26 6 0.6 0.20 0.40
27 5 0.5 0.17 0.33
28 1 0.1 0.03 0.07

From the above table, the characteristic values of the above
distribution are -

Table-1V: Characteristics of Distribution

Characteristic | Max. Temp. Value | Min. Temp. Value
MPV 0.83 0.67
PV 5.0 2.0
Average Tgr = 34°C with Tr = 25°C with
EPV =0.17 EPV =0.13
Specificity 0.1328 0.2653
VII. RESULT

In the above example, we have shown a fundamental
calculation of instantiation and precisiation of a possibility
distribution. It is clear that -

* The maximum temperature group has more observation,
however they occur in similar frequencies. On the other hand,
the minimum temperature group has fewer observations, but
they appear at different frequencies.

* Similarly, the minimum temperature group is more
specific than the maximum temperature group, because the
number of distinct observations is less in the minimum
temperature group. temperature group, and the mode
frequency is higher in mini. temperature group.

VIII. CONCLUSION

As is clear from the above example, constructing a
possibility distribution using context variables and
calculating various characteristics is straightforward and can
be applied to multiple data settings. Similarly, the calculation
of specificity does not require a specific arrangement of
frequency or probability distribution; therefore, it can be
applied to many more situations involving continuous data
streams or fixed datasets. Our formulation of specificity is
less restrictive but efficient in the application of various
possible scenarios.
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