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Impacts of Some Definitions on Algebra of 

Differential Operators for Noncommutative Algebras 

SAMA Anzoumana, Bah S.B. Kouame, Kouakou Konan Mathias

Abstract: Rings of differential operators are one of the most 

important noncommutative (associative) algebras. They play an 

important role in the representation theory of Lie algebras and the 

algebraic analysis of systems of partial differential equations. 

However, If A is a commutative and unitary algebra on a field k, 

Grothendieck defined the ring of differential operators on the 

algebra A, denoted by D(A), as follows: 

D(A):=∪Dⁿ(A),  
where D⁻¹(A)=0 and for n∈ℕ, (1) 

Dⁿ(A):={u∈ Endk(A):[u, a]=ua-au ∈ Dⁿ⁻¹(A),∀ a∈ A}. 

In this paper, we show that with this definition, the algebra of 

differential operators is no longer rich when it is a 

noncommutative algebra. 

Keywords: Differential Operators, Weyl Algebra, 

Noncommutative Algebra, Derivation on an Algebra. 

I. INTRODUCTION

In this paper, k is a zero characteristic field. The concept

of differential operators on algebras was initially presented as 

(1) in [7] by Grothendieck. This approach has permitted to

study of differential operators on commutative algebras.

Indeed from this definition, it is well known that in

characteristic zero, the algebra of differential operators on the

polynomial algebra in n variables is the n-th noncommutative

algebra that has almost the same properties as Weyl algebra.

Stafford uses it to describe in terms of differential operators

in [10], the endomorphisms of a right ideal of a Weyl algebra.

Also, This approach allowed Bouchaïb El Boufi to extend in

[4], a result of I.M. MUSSON on finite type algebras, to finite

type A-modules without torsion.

However, the discussion that took place on a recursive 

description of algebras of differential operators on diagrams, 

and therefore on commutative algebras in terms of 

commutators (see in [7], p.42-43), interested Hazewinkel to 

know whether something more or less similar can be done for 
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noncommutative algebras. This would be of particular 

interest for homotopy algebras, higher derivative algebras 

(see in [1] and [2]) and for the theory of deformation of 

algebras and diagrams to Gerstenhaber-Shack (see in [3] and 

[6]). For that, Michiel Hazewinkel proposed in [8], a new 

definition of the ring of differential operators [12]. 

In this paper, we show that Hazewinkel's approach is the 

best for studying the algebra of differential operators on a 

noncommutative algebra [13]. 

This paper is organized as follows. In section 2, we give 

some definitions, notations, and properties of differential 

operator algebra. In section 3, algebra is no longer 

commutative [14]. Firstly, focusing on Weyl algebras, we 

show that the algebra of differential operators loses under the 

first approach some of these module properties, and does not 

necessarily contain all the multiplicative morphisms and 

derivations. Secondly, we show that with Hazewinkel's 

definition, the algebra of differential operators on a 

commutative case [15]. 

II. PRELIMINARIES

In this section, we present some definitions, notations, 

basic properties, and theorems, which are necessary for the 

best understanding of this paper. 

A. Notation

1. LA :={la ∈ Endk(A), a ∈A}, where la(x) =ax, for all x∈A.

2. RA :={ra ∈ Endk(A), a ∈A}, where ra(x) =xa, for all x∈A

3. Derk(A) denotes the space of derivatives on a k-algebra A.

4. An(k) denotes the n-th Weyl algebra.

5. For all g ∈ An(k) = k< x₁,..,xn,y₁,..,yn >,

gxq’=((∂g)/(∂xq)) and gyq’=((∂g)/(∂yq)). 

The first approach of differential operator, which has been 

defined for commutative algebra, is: 

i. Definition

The ring of differential operators on a commutative and 

unitary k-algebra A is defined by: 

D(A):=∪ Dn(A),  

where D-1(A)=0 and for n∈ℕ, 

Dn(A):={u∈ Endk(A):[u, a]=ua-au ∈ Dn-1(A),∀ a∈ A}. 

With ua and au are elements of Endk(A) defined by: 

∀x∈A, ua(x)=u(ax) and au(x)=a(u(x)). 

Any element u∈Dⁿ(A) is called a differential operator of 

order n on A. 

With this approach, some important properties of the ring 

of differential operators on commutative and unitary 

k-algebra are:

ii. Proposition

([11]) 

1. Endk(A) is a 

(D(A),D(A))-bimodule.
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2. let n≥0 be an integer, Dⁿ(A) is a (A,A) –sub-bimodule of 

Endk(A). 

3. D(A) is a (A,A)-sub-bimodule of Endk(A). 

4. D(A) is a subalgebra of .Endk(A). 

B. Proposition 

([11] ). Let m,n∈ ℕ. 

1. D⁰(A)= EndA(A) 

2. Dⁿ(A)⊆ Dn+1(A)). 

3. Dm(A).Dⁿ(A)⊆ Dm+n(A). 

4. [Dm(A).,Dⁿ(A)]⊆ Dm+n-1(A). 

5. D(A) is a subalgebra of Endk(A). 

i. Proposition 

([9]) For all k-algebra A,  

 

ii. Proposition 

([9]). D(A) is an algebra filtered by the increasing sequence 

of submodules (Dⁿ(A))n∈ℕ. 

iii. Definition 

([6]). The n-th Weyl algebra is associative, unitary and 

noncommutative algebra, generated by 2n elements x₁,…,xn 

and y₁,…,yn, which satisfy the following defined relations: 

 

 

iv. Definition 

Let A be a ring.  

A derivation δ on A is interior if there exists c ∈A such 

that: δ(x) =[c, x]=cx-xc, for all x∈A.  

v. Proposition 

(Seen in [5])  

All non-zero derivations on Weyl algebra are interior. 

Hazewinkel defines the ring of differential operators as 

follows: 

C. Definition 

([8]). The ring of differential operators on the algebra A is 

defined as follows: 

D(A)=∪Dn(A), 

where D-1(A)=0 and for n ∈ ℕ, 

Dn’(A) = {u ∈Endk(A):[u, a]=ua- au∈ Dn-1(A),∀a ∈A} 

Dn(A) = LA Dn’(A)LA 

Any element u∈ Dn (A) is called a differential operator of 

order n on A.  

III. DIFFERENTIAL OPERATORS ON A 

NONCOMMUTATIVE ALGEBRA 

In this section, A is a noncommutative unitary algebra. 

We show that the Hazewinkel approach is the best for  

studying the algebra of differential operators on a 

noncommutative algebra. 

A. Algebra of Differential Operators on a 

Noncommutative Algebra According to the First 

Approach  

Compared to the commutative case, Dⁿ(A) and D(A) 

change structure algebraic when the algebra is 

non-commutative, as the proposition announces the 

following. 

i. Proposition 

Let n∈ℕ.  

1. D⁰(A)= RA. 

2. Dⁿ(A) is a subgroup of Endk(A). 

3. RA .Dⁿ(A)⊆ Dⁿ(A) and Dⁿ(A). RA ⊆ Dⁿ(A).  

4. Dⁿ(A) is a (RA - RA) –sub-bimodule of Endk(A). 

5. D(A) is a (RA - RA) –sub-bimodule of Endk(A).  

Proof: Let n∈ℕ.  

1. For all u∈D⁰(A), we have u=ru(1). Thus, D⁰(A)⊂ RA. Since 

RA ⊂D⁰(A), so D⁰(A) = RA 

2. We know that 0Endk(A) ∈Dⁿ(A) and Dⁿ(A)⊆Endk(A) . 

Then, we show by induction on n that Dⁿ(A) is sable. 

▪ For n=0, D⁰(A)= RA . Then, D⁰(A) is sable. 

▪ Now, assume that the result is true for an integer n≥0 and 

prove it for n+1. 

Let u,v ∈ Dⁿ⁺¹(A) and a ∈A. Since [u, a], [v, a] ∈Dⁿ(A), 
thus [u-v, a]=[u, a]-[v, a] ∈Dⁿ(A). 

Hence, u-v ∈Dⁿ⁺¹(A). It follows that Dⁿ(A) is a subgroup of 

Endk(A).  

3. By induction on n∈ℕ.  

▪ For n=0, D⁰(A)= RA. Then, RA.D⁰(A)⊆ D⁰(A).  

▪ Now, assume that the result is true for an integer n≥0 and 

prove it for n+1.  

Let a ∈A and u∈Dⁿ⁺¹(A). We have 

[ra∘u,b] = ra ∘[ u,b] ∈Dⁿ(A), for all b ∈A. 

Then, ra ∘u∈Dⁿ⁺¹(A). Hence, RA. Dⁿ(A) ⊆ Dⁿ(A),for all 

n∈ℕ. 

Similarly, we show that Dⁿ(A). RA ⊆ Dⁿ(A), for all n∈ℕ. 

4. From 2 and 3, we obtain this property.  

5. It is the consequence of the previous one. □ .  

Besides, on Weyl algebras, we show that the algebra of 

differential operators loses under the first approach some 

properties. 

In this paragraph, we study the properties of the algebra of 

differential operators on a Weyl algebra. 

ii. Remark 

Let g ∈An(k) =k<x₁,..,xn, y₁,...yn>. We have: 

1. [g, xm] =gym’, for all m∈1,n. 

2. [g, ym] =- gxm’, for all m∈1,n.  

iii. Lemma 

Let n∈ℕ, P ∈k[x₁,., xn] and Q ∈k[y₁., yn]. We have: 

1. [P, xmym] ∈k[x₁,.,xn] and deg[P, xmym] =degP, ∀m=1,.,n. 

2. [Q, xmym] ∈ k[y₁,.,yn] and deg[Q, xmym] =degQ,∀m=1,.,n.  

Proof: According to previous Remark 3.1, we have:  

1. [P, xmym] =xm [P, ym] =-xmPxm’. Then, [P, xmym] ∈k[x₁,.,xn] 

and deg[P, xmym] =degP  

2. Similarly, we obtain 2) □ 

Unlike the commutative case, the algebra of differential 

operators on Weyl algebra does not contain derivations, as 

the following result indicates: 

iv. Theorem 

For all a ∈An(k)∖k, the multiplicative morphism la is not a 

differential operator on An(k). 

Proof: Let a ∈ An(k). 

▪ Case 1: for a ∈k, we have la =ra ∈D⁰( An(k)). Then,  

Lk ⊂D(An(k)). 

▪ Case 2: a ∈k[xt] such that 

deg(a)≥1. 

Since [la, xtyt] =l[a, xtyt]. 

Then, from Lemma 3.1, we  
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get 

[[[la, xtyt], xtyt],........, xtyt]∉RAn(k) =D⁰( An(k)). 

Therefore, la ∉D(An(k)).  

▪ Case 3: a ∈k[yt] such that deg(a)≥1. Similarly to case 2. 

▪ Case 4: a ∈A_{n}(k)∖k . 

According to Lemma 3.1, we can after t square brackets 

[[[a, z₁],z₂ ],..zq...... zt], where for all q=1,…t,  

zq ∈{x₁,..,xn, y1,...,yn},  

obtain an element b ∈k[xt]∪k[yt]. It follows that 

[[[la,z₁],z₂ ],..zq......,zt]=l[[[a,z₁],z₂ ],..zq......,zt]=lb. 

From cases 2 and 3, we get la ∉D(An(k)). □.  

v. Theorem 

Non-zero derivation on An(k) is not the differential 

operator.  

Proof: Let z∈ An(k) =k〈x₁,.,xn, y1,…,yn〉 and d a non-zero 

derivation on An(k). 

According to Proposition 2.5, there exists m∈ An(k)such 

that d(z)=[m, z]. 

▪ Show that there exists b₀∈ An(k) such that d(b₀)∉k . 

Suppose that 

d(z) ∈k, for all z ∈ An(k) (2) 

By taking z =x₁ and z =y₁, we obtain 

m=P+α₁y₁, with P ∈k[x₁,.,xn, y₂,.,yn] and  

m=Q+α₂x₁, with Q ∈k[x₂,.,xn, y₁,.,yn] 

Thus 

m=D+α₂x₁+α₁y₁ (3) 

with D ∈k[x₂,..,xn, y₂,..,yn] .  

From (3), we get d(x₁ y₁) =[m, x₁y₁] =-α₂x₁+α₁y₁. 

We deduce from (2) that α₂=α₁=0. 

Which means that m ∈ An-1(k) =k〈x₂,..,xn,y₂,..,yn〉.  
So on, we obtain m ∈k (Absurd) because d is non-zero. 

Therefore, there exists b₀∈An(k) such that d(b₀)∉k. 

According to Theorem 3.1, [d, b₀]=ld(b₀)∉D(An(k)).  

Hence, d ∉D(An(k)). 

vi. Corollary 

Let m,n ∈ℕ. 

Dm( An(k)) and D(An(k)) are not An(k)-modules on the left.  

Proof: Indeed, according to previous Theorem 3.2, we have 

au=la∘u ∉D(An(k)), for all a ∈ An(k)∖k and u ∈Dm( An(k)). □ 

B. Algebra of Differential Operators on a 

Noncommutative Algebra According yo M. Hazewinkel 

Unlike the first approach, Dn(A) and D(A) have almost the 

same algebraic structures as the commutative case. 

i. Proposition 

Let n∈ℕ 

1. Endk(A) is a (A, A)-bimodule. 

2. Endk(A) is a (D(A),D(A) )-bimodule. 

3. Dn(A) is a (A,A) –sub-bimodule of Endk(A).  

4. D(A) is a (A,A)-sub-bimodule of Endk(A).  

Proof 

1. Endk(A) is (A-A) bimodule with the external laws 

ϕ₁: A× Endk(A)→ Endk(A) 

(a,u)↦la∘u 

and 

ϕ₂: Endk(A))×A→Endk(A) 

(u,a)↦u∘la  

2. The following laws: 

ϕ₁: D(A)× Endk(A)→ Endk(A) 

(u,v)↦u∘v 

and 

ϕ₂: Endk(A)×D(A)→ Endk(A) 

(v,u)↦v∘u  

justify that D(A) is an (A,A)-subbimodule de Endk(A). 

3. Let n∈ℕ, a ∈A and u ∈DnA). We have au =la∘u ∈Dn(A) 

and ua =u∘la ∈Dn(A). 

Hence, Dn(A) is an (A-A) sub-bimodule of Endk(A). 

4. From 3, we obtain 4. □  

The following proposition specifies that the set D(A) of 

differential operators on a noncommutative algebra A, is 

indeed an algebra. 

ii. Proposition 

Let m,n∈ℕ  

1. idA ∈ D₀(A). 

2. Dn(A)⊆ Dn+1(A).  

3. Dm(A).Dn(A)⊆ Dm+n(A). 

4. D(A) is a subalgebra of Endk(A). 

Proof:  

1. idA ∈D₀(A) because idA =r1A 

2. By induction on n∈ℕ. Let u ∈Dn(A). 

▪ For n=0, D₀(A)=LARALA .Therefore, there exists a,b,c∈ A 

such that u =la∘rc∘lb. 

Then, for all s ∈A, we have  

[u, s] =la ∘[g, s]∘lb+las-sa∘g∘lb+la∘g∘lbs-sb ∈ D₀(A). 

It follows that u∈ D₁’(A)⊆D₁(A). Hence, D₀(A)⊆D₁(A).  

▪ Now, assume that the result is true for an integer n≥0 and 

prove it for n+1. 

▪ Let u∈Dn+1(A). 

There exists a,b, c ∈ A and g ∈Dn+1’(A) such that  

u= la∘g∘lb. 

Then, for all s ∈A, we get 

[u, s]=la ∘[g, s]∘la+las-sa∘g∘lb+la∘g∘lbs-sb. 

Thus, [u, s]∈Dn+1(A), for all s ∈A. It follows that  

u∈Dn+2’(A)⊆Dn+2(A). 

▪ We conclude that Dn(A)⊆Dn+1(A), for all n∈ℕ. 

3. See in [4] page 9-10. 

4. From,1, 2 and 3, we get 4. 

iii. Proposition 

1. D₀(A)=LARA  

2. Derk(A)⊆ D₁(A).  

Proof: Let δ ∈ Derk(A) and a ∈A.  

1) According to Definition 2.5.  

2) Indeed [δ, a]=lδ(a) ∈D₀(A). Then,  

δ ∈D₁’(A)⊆D₁(A). □ 

IV.  CONCLUSION 

In closing, we assert that the richness of the algebra of 

differential operators depends not only on its "commutative" 

nature but also on the methodological framework applied in 

its analysis. Consequently, Hazewinkel's approach proves to 

be the most effective for examining noncommutative 

algebras. 
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