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On Algebraic and Topological Properties of Some 

Fundamental Groups 

Laurent Djerassem, Daniel Tieudjo 

Abstract: In this paper, we study the algebraic and topological 

properties of some topological spaces. We note that the 

fundamental group of a topological group is abelian and we study 

some spaces of the same homotopy type with the unit circle S1. 

The basic group of the unit circle S1 is isomorphic to the additive 

group of integers. We say that a topological space is simply 

connected if it is path-connected and has a trivial fundamental 

group. We show that the fundamental group of a n-punctured 

plane is free and we characterize some surfaces as topologically 

distinct. 
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I. INTRODUCTION

It’s well known that a simple connexity is a homotopy

invariant. If X is a simply connected space, then any two 

paths having the same initial and final points are path 

homotopic [1]. If X and Y are two connected spaces by arcs 

and have the same homotopy type, their fundamental groups 

are isomorphic [2]. A fundamental group is invariant under 

homeomorphisms and is a topological invariant [9]. The 

utility of the group concept in homotopy theory is increased 

by the relations between the fundamental group considered 

as a functor from based topological spaces to groups 

π1 : Top∗ −→ Groups 

and another functor called the classifying space 

B: Groups −→ Top∗ 

which is the composite of the geometric realization and 

the nerve functor N from Groups to simplicial sets [3]. 

Some Problems: 

▪ Problem 1: If X is a topological space, under what

condition its fundamental group becomes abelian?

▪ Problem 2: Let p1,p2,...,pn be n distinct points in ℝ2.

What is the fundamental group of the n-punctured

plane ℝ2 −{p1,...,pn}?

▪ Problem 3: What are the spaces that are of the same

homotopy as S1?

▪ Problem 4: Are there surfaces or varieties that are

topologically distinct?
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We will provide solutions to these various problems by 

drawing inspiration from the main results established in the 

preliminaries [10]. The Seifert-Van Kampen's Theorem 

gives a method for computing the fundamental groups of 

spaces that can be decomposed into simpler spaces whose 

fundamental groups are already known [4]. Let R be a subset 

of a space X; If R is a deformation retract of a space X, then 

their fundamental groups are isomorphic [5]. It's known that 

the circle. 

C ={(x,0) : 0 ≤ x ≤ a} 

is a deformation retract of the Mobius band 

 M ={(x,y) : 0 ≤ x ≤a, −1 ≤ y ≤1}  [5]. 

As set C is homeomorphic to the unit circle and the unit 

circle S 1 has the set of integers Z as the fundamental group 

we see that the fundamental group of the Mobius band is ℤ 

by [5], [6]. 

II. PRELIMINARIES

We recall here some useful definitions and results. 

A. Fundamental group

Definition 2.1. Let I = [0,1] be the unit interval, and let X be 

a topological space. If x0 ∈ X, a pointed space (X,x0) is a 

space X together with x0, and x0 is called the basepoint of X. 

A path is a continuous map f: I → X. A loop in a pointed 

space (X,x0) is a path f: I → X such that f(0) = f(1) = x0. 

Definition 2.2. Let X and Y be topological spaces. Let f: X 

→ Y and g: X → Y be two continuous functions. We say that

f and g are homotopic if there exists a continuous function

F: X × I → Y such that ∀ x ∈ X, F(x,0) = f(x) and F(x,1) =

g(x). We denote that f and g are homotopic and F is called a

homotopy between f and g, and we write f∼ g.

Proposition 2.1. The relation of homotopy on paths with 

fixed endpoints in any space is an equivalence relation. 

Definition 2.3. A homotopy equivalence is a continuous map 

of topological spaces f: S −→ T such that there exists a 

continuous map 

g: T −→ S with 

g ◦ f ∼ IdS, f ◦ g ∼ IdT . 

g is called the homotopy equivalence of f. 

Proposition 2.2. Any homeomorphism is a homotopy 

equivalence. 

Proof. If f: S −→ T is a homeomorphism, then f has a 

continuous inverse g: T −→ S,  

so g ◦ f = IS and f ◦ g = 

IT,hence g ◦ f ∼ IdS and f ◦ g  

∼ IdT.
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Definition 2.4. (The composition of paths) Let f,g: I 

→ X be two paths. Define the composition of f and g denoted 

f.g: I → X, by 

 (f.g)(t)=f(2t)       if 

0 ≤ 𝑡 ≤
1

2
 

(f.g)(t) =𝑔(2𝑡 − 1)  if  
1

2
≤ 𝑡 ≤ 1 

                    (2.1) 

Remark 2.1. We denote the equivalence class of a path f 

under the equivalence relation of homotopy by [f], and the 

product operation f.g in (2.1) respects homotopy classes 

since f0 ' f1 and g0 ' g1 via homotopies ft and gt respectively, 

and if f0(1) = g0(0) so that f0.g0 is defined, then ft. gt is defined 

and provides homotopy f0.g0 ∼ f1.g1. 

 

Definition 2.5. Let f: I → X be a path with the same starting 

and ending point f(0) = f(1) = x0 ∈ X. Such a path is called a 

loop. The common starting and ending point x0 for a class of 

paths is referred to as the base point. The set of all 

homotopy classes [f] of loops f: I → X at the basepoint x0 is 

denoted π1(X,x0). 

 

Proposition 2.3. Let π1(X,x0) be the set of all homotopy 

classes [f] of loops f: I → X at the base point x0. Then 

π1(X,x0) is a group concerning the product [f][g] = [f.g]. This 

group is called the fundamental group of X at the point base 

x0. 

 

Definition 2.6. 

(Topological group) Let (G,.) be a group whose law is 

denoted multiplicatively. We say that G is a topological 

group if G is a topological space and is endowed with a 

topology, such that multiplication G × G − → G, (x,y) ↦ xy 

and inversion G −→ G, x ↦ x−1 are continuous. 

 

Definition 2.7. Let x0 +++++-and x1 be two base points that lie 

in the same path component of X. Let h: I −→ X be a path 

from x0 to x1, with an inverse path 

 
h(s) = h(1−s) from x1 to x0. For each loop f based at x1, we 

can associate the 

 
Loop hfh. We can define a change-of-basepoint map 

𝛽ℎ  : π1(X,x1)→π1(X,x0) by 

𝛽ℎ(f)=[hfℎ] 

 

Proposition 2.4. Let x0 and x 1 be two base points of X. 

Then, the map 𝛽ℎ:   is an isomorphism. 

Proof. It is clear that 𝛽ℎ  is a homomorphism since 

𝛽ℎ[𝑓𝑔]=[hfgℎ]=[hfℎhgℎ]=𝛽ℎ(𝑓)𝛽ℎ(𝑔). We know that 𝛽ℎ  is 

a bijection with inverse 𝛽ℎ since 𝛽ℎ𝛽ℎ[𝑓] = 𝛽ℎ[ℎ𝑓ℎ] =

[ℎℎ𝑓ℎℎ] = [𝑓] 

and similarly 𝛽ℎ𝛽ℎ[𝑓] = [𝑓].   

 

Proposition 2.5. Let X, and Y be two topological spaces. 

Suppose  

f: X −→ Y is a homeomorphism defined by x ↦ y. Then, 

π1(X,x) and π1(Y,y) are isomorphic. 

Proof. We define a homomorphism π1(f): π1(X,x) −→ π1(Y,y) 

by sending a path γ: I −→ X to the path f ◦ γ: I −→ Y. 

Since f is a homomorphism, f has an inverse map f−1, and the 

map π1(f−1): π1(Y,y) −→ π1(X,x) is an inverse to π1(f). 

  
 

Definition 2.8. Let X, and Y be topological spaces. X and Y 

are said to be homotopic, written as X ∼ Y, if there exist 

mappings f: X −→ Y and g: Y −→ X such that f ◦ g: Y −→ Y 

and g◦f: X −→ X are homotopic to the identity. We say that 

X and Y are of the same homotopy type. The map f is called 

the homotopy equivalence and g, is its homotopy inverse. 

 

Remark 2.2. If X and Y are homeomorphic, then 

X and Y are of the same homotopy type but the converse is 

not necessarily true. For example, a point {P} and the real 

line ℝ are of the same homotopy, type but {P} and R are not 

homeomorphic. 

 

Proposition 2.6. “Of the same homotopy type” is an 

equivalence relation in the set of topological spaces. 

Proof. [7]  

 

Proposition 2.7. Let 

X, Y be two spaces. Let x0 ∈ X and y0 ∈ Y. 

Then 

π1(X × Y(x0,y0)) ∼= π1(X,x0) × π1(Y,y0). 

Proof. Given a loop f in X and a loop g in Y, we obtain a loop 

in X × Y by viewing f as a loop in X×{y0} and g as a loop in 

{x0}×Y and taking f.g as a loop in X ×Y. To show this map is 

surjective if we have a loop h in X×Y, one can write this as a 

function s ↦ ℎ𝑠(𝑥, 𝑦) = 

(f s(x),gs(y)). Then ℎ𝑠 is homotopic to the composition of the 

loops s ↦(fs(x),y0) and s↦(x0, gs(y)) (where the composition 

is taken in the fundamental group via the operation of 

Proposition 2.3).   

 

Example 2.1. Let S1 be the unit circle. Then π1(S1 ×S1,(x0,y0)) 

=π1(S1,x0)×π1(S1,y0). 

 

B. Deformation Retract 

Definition 2.9. Let R be a nonempty subspace of X. If there 

exists a continuous map f: X −→ R such that f |R= IdR, R is 

called a retract of X and f a retraction. 

 

Definition 2.10. Let R be a subspace of X. If there exists a 

continuous map H: X × I −→ X such that 

H(x,0) = x H(x,1) ∈ R for any x ∈ R 

(2.2) 

H(x,t) = x for any x ∈ R and any t ∈ I 

(2.3) 

The space R is said to be a deformation retract of X. H is 

therefore a homotopy between IdX and the retraction f: X 

−→ R. 

 

Proposition 2.8. Let R be a subspace of X. Since X and  

R are of the same homotopy  

type, we have π1(X, a) ∼= 

π1(R, a) ∀ a ∈ R 

(2.4) 
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Example 2.2. Let X be the unit circle and Y be the annulus, 

X = {𝑒𝑖𝜃| 0 ≤ 𝜃 < 2π} 

                (2.5) 

Y={r𝑒𝑖𝜃 | 0 ≤ 𝜃 < 2π, 
1

2
≤ 𝑟 ≤

2

3
}        

(2.6) 

The circle X is a deformation retract of the annulus Y. 

Define f: X → Y by f(𝑒𝑖𝜃) =𝑒𝑖𝜃  and g: Y→ X by g(r𝑒𝑖𝜃) = 𝑒𝑖𝜃. 

Then f ◦ g: r𝑒𝑖𝜃→ 𝑒𝑖𝜃  and g ◦ f : 𝑒𝑖𝜃→ 𝑒𝑖𝜃. Observe that f ◦g 

≃ 𝐼𝑑𝑌  and g∘f≃ 𝐼𝑑𝑋 

There exists a homotopy 

H(r𝑒𝑖𝜃, t) = 

{1 + (r − 1)(1− t)} 𝑒𝑖𝜃 

 

Which interpolates 𝐼𝑑𝑋  and f∘g, keeping the points on X 

fixed. Hence, X is a deformation retract of Y. As for the 

fundamental groups we have  

π1(X,a) ∼= π1(Y,a) 

where a ∈ X 

 

Proposition 2.9. If a space X retracts onto a 

subspace A, then the homeomorphism i∗ : π1(A,x0) −→ 

π1(X,x0) induced by the inclusion i: A,→ X is injective. If A 

is a deformation retract of X, then i∗ is an isomorphism. 

C. Contactable Spaces 

Definition 2.11. Let X be topological space and let a ∈ X. If 

a is a deformation retract of X, X is said to be contractible. 

 

Remark 2.3. Let ca: X −→{a} be a constant map. If X is 

contractible, there exists a homotopy H: X×I −→ X such 

that. 

H(x,0) = ca(x) = a and H(x,1) = IdX(x) = x for any x ∈ X, and 

H(a,t) = a for any t ∈ I. The homotopy H is called the 

contraction. 

 

Example 2.3. The space X =ℝ𝑛  is contractible to the origin 

0. We can define H: ℝ𝑛  × I −→ℝ𝑛  by H(x,t) = tx. Then we 

obtain H(x,0) = 0 and H(x,1) = x for any x ∈  X and H(0,t) = 

0 ∀  t ∈  I. 

 

Theorem 2.1 Let X be a contractible space. Its fundamental 

group is trivial, π1(X,x0) ∼= {e}. In particular, the 

fundamental group of ℝ𝑛  is trivial, π1(ℝ𝑛,x0) ∼= {e} for all 

n≥1. 

 

Proof. Since a contractible space has the same fundamental 

as a point p and a point has a trivial fundamental group, 

π1(X,x0) ∼= {e} by Proposition 2.9.  

 

D. The Fundamental Group of the Circle S 1 

We have the following theorem which provides the 

fundamental group of the the 1-sphere considered as a unit 

circle S1 on the complex plane. 

 

Theorem 2.2. The fundamental group of S1 is isomorphic to 

ℤ.  

π1(S1) ∼= Z . (2.7) 

Proof. Cf. [8] 

E. Product of Spaces 

Theorem 2.3. Let 

X and Y are arcs connected to 

topological spaces. Then 

π1(X × Y,(x0,y0)) is isomorphic to 

π1(X,x0) ⊕   π1(Y,y0). 

Proof. Define projections p1: X × Y −→ X and p2: X×Y −→ 

Y. If α is a loop in X × Y at (x0,y0), then α1 ≡ p1(α) is a loop 

in X at x0, and α2 ≡ p2(α) is a loop in Y at y0. Conversely, any 

pair of loops α1 of X at x0 and α2 of Y at y0 determines a 

unique loop α = (α1,α2) of X × Y at (x0,y0). Define a 

homomorphism φ: π1(X × Y,(x0,y0)) −→ π1(X,x0) ⊕  π1(Y,y0) 

by φ([α]) = ([α1],[α2]). 

By construction φ has an inverse, hence it is the required 

isomorphism, and π1(X× Y,(x0,y0)) ∼= π1(X,x0) ⊕   π1(Y,y0).  

 

F. Some Examples 

1. Let T2 = S1 × S1 be a torus. Then π1(T2) ∼= π1(S1)⊕   

π1(S1) ∼= ℤ ⊕   ℤ 

Similarly, for n-dimensional torus Tn = S1×S1×...×S1 n-

times we have 

π1(Tn) ∼= ℤ ⊕ ... ⊕   ℤ n-times 

2. Let X = S1 × ℝ be an infinite cylinder. Since π1(ℝ) 
∼= {e}, we obtain π1(X) ∼=ℤ⊕{ {e} ∼= ℤ. 

because the cylinder has S1 as a deformation retracted by 

the homotopy 

H((x,y),t) =(x,(1 − t)y) 

The same is true for a compact cylinder 

 C = S1 × I for 

I = [0,1], by the same previous homotopy, so π1(C) = ℤ. 

3. For the space S1 = {x∈ ℝ2 : IxI> 1} we have π1(S1) = ℤ. 

  The space 

2S1 = {x ∈ R2 : IxI= 2} is a deformation retract of S1 by 

the straight-line homotopy 

H(x,t) = 

2tx 

 (1 − t)x + . 

| x | 

4. The space S2 = {x∈ ℝ2 : |x|≥ 1} has the unit circle S1 as 

deformation retract by the straight-line homotopy 

H(x,t) = tx 

 (1 − t)x +
𝑡𝑥

𝐼𝑥𝐼
 

So π1(S2) ∼= ℤ. 

5. The fundamental group of solid torus S1 × B2 is 

π1(S1 × B2) = 

π1(S1) × π1(B2) = ℤ × {e} ≅ ℤ 

6. The product space S1 ×S2 has a fundamental group 

π1(S1 × S2) = 

π1(S1) × π1(S2) = ℤ × {e}≅ ℤ. 

7. Let us prove that the fundamental group of the real 

projective plane ℝP2 is isomorphic toℤ2 a cyclic group 

of order 2, and likewise for  

real projective n-space  

ℝPn. 

The projective plane P2 is a surface, and the quotient map p: 

S2 −→ P2 defined as p(x) = [x] =  

{−x,x} is a covering map.  

Note that n-space Pn can be 

similarly defined by 

http://doi.org/10.54105/ijam.B1177.05010425
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"identifying" x and −x for each x on the n-sphere Sn. The 2 

sphere is simply connected since the map 

R: ℝ3 − {0} −→ S2 

given by x ↦  
𝑥

𝐼𝑥𝐼
 

 is a deformation retract of ℝ3 − {0} onto the

 2-sphere. The projective plane ℝ P2 has the fundamental 

group ℤ/2ℤ since it is the quotient of S2 by the identification 

x = −x. The projection map is a covering map, and the group 

of covering transformations is exactly ℤ2  = {Id, 

x=−x}. 

The nontrivial element in the fundamental group of ℝ𝑃2 

can be thought of as the quotient of a great chord on S2 that 

connects the North to the South Pole [11]. 

G. Covering Spaces 

As we will see, covering spaces can be used to compute 

fundamental groups of some spaces. 

Definition 2.12. Let A and B be two spaces. A map p: A −→ 

B is a covering space if: around each point b ∈ B, there is a 

neighborhood N of b so that p−1(N) is a disjoint union of sets 

Ai each of which is mapped homomorphically onto N by p. 

Example 2.4. The classic example is the exponential map 

exp: exp: ℝ ⟶ S1. 

Theorem 2.4. 

(Classification of Covers) 

Let B be a space. To every subgroup of π1(B,b) there is  

a covering space of B so that the induced subgroup is the 

given one. 

Remark 2.4.  

▪ If (A, a,p) and (A', a',p') are two different covers 

corresponding to the same subgroup, then there 

exists a unique homeomorphism h : (A, a) ⟶ (A', a') 

so that p = ph. 

▪ Note that a cover of a cover is a cover so that 

smaller subgroups correspond to "higher" covers. 

▪ The trivial subgroup corresponds to the ”universal 

cover” of B. 

▪ Note too, that if p : (A, a)⟶(B,b) is a universal 

cover, then for any a’∈  p−1(b), there is a unique 

homeomorphism  ℎ𝑎′: A⟶A 

so that 

ℎ𝑎′(𝑎)=a’ 
 
pℎ𝑎′= p. 

The set of homeomorphisms that satisfy the second 

condition form a group (sometimes called the group of 

covering transformations or the group of deck 

transformations). It turns out that this group is isomorphic 

to the fundamental group of B. 

H. The Wedge Sum 

A topological space can be presented in the form of a 

wedge with two or several circles. We give here the 

definition of the wedge of circles. 

Definition 2.13. Let 

(X,x0) and (Y,y0) are two-based spaces. Their wedge sum, or 

one-point union, is 

X ∨ Y = X⨆Y/ ∼ 

where x0 ∼ y0 and X⨆Y design the disjoint union of X and Y. 

Definition 2.14. Let X be a space that is a union of the 

subspaces Sα, for α ∈ J, each of which is homeomorphic to 

the unit circle. Assume there is a point p of X such that Sα ∩ 

Sβ = {p} whenever α≠β. If the topology of X is coherent with 

the subspaces Sα, then X is called the wedge of the circles Sα. 

I. Free Product of Groups 

Remark 2.5. (Free group) 

▪ Let G be a group noted as a product, 1 is the identity 

element and 

the inverse of each element x is noted as x−1. If {Gα}α∈  J is a 

family of subgroups of G. We say that these groups generate 

G if every element x of G can be written as a finite product 

x = x1x2...xn, where xα ∈ Gα. The sequence (x1,...,xn) is called 

a word of length n and it is said to represent the element x of 

G [12]. 

▪ However, if xi and xi+1 both belong to the same 

subgroup Gα, we group them, thereby obtaining the 

word 

(x1,...,xi−1,xixi+1,xi+2,...,xn) 

Of length n − 1, which also represents x. 

Furthermore, if any xi equals 1, we can delete xifrom the 

sequence, again obtaining a shorter word that represents x. 

By successively repeating these reduction operations, one 

can obtain a word representing x of the form (y1,...,ym) 

where no group Gα contains both yi and yi+1 and where yi 6= 

1 for all i. Such a word is called a reduced word. 

We obtain the following definition. 

 

Definition 2.15. Let G be a group, and let {𝐺𝛼}𝛼∈𝐽   be a 

family of subgroups of G that generate G. Suppose that Gα ∩ 

Gβ consists of the identity element alone whenever 𝛼 ≠ 𝛽. 

We say that G is the free product of the group Gα if, for each 

x ∈ G, there is only one reduced word in the group Gα that 

represents x. In this case, we write 

G = ∏𝜶∈𝑱
∗ 𝑮𝜶 

or in finite case, G = G1∗ G2∗ ... ∗ Gn. 

 

Remark 2.6. An important property of the free product 

∗αGα is that any collection homomorphisms φα: Gα −→ H of 

groups extends uniquely to a homomorphism φ: ∗αGα −→ H. 

For example, for a free product G ∗ H the inclusions G −→ 

G × H and H −→ G × H induce a surjective homomorphism 

G ∗ H −→ G × H. 

J. Seifert-Van Kampen Theorem 

We quote here the Seifert-Van Kampen Theorem which 

will allow us to determine the fundamental groups of some 

spaces. 

Theorem 2.5. (SeiferVan Kampen’s Theorem) 

Let X  be the union of n path connected, such 

that each A α ∩ Aβ is path connected, and where each Aα 

contains a given basepoint x 0 ∈ X. We have homomorphisms 

π1(Aα,x0) −→ π1(X,x0) induced by the inclusions 

Aα −→ X and homomorphisms i αβ : π1(Aα ∩ A β,x0) −→ 

π1(X,x0) induced by the inclusions 

Aα ∩ Aβ −→ X. 

1. The homomorphism 

𝜙  : π1(A1,x0) ∗ π1(A2,x0) ∗ ... ∗ 

π1(An,x0) ⟶π1(X, x0) 

is surjective. 

2. If further each 

Aα ∩ Aβ ∩ Aγ is path-

connected, then the kernel  

http://doi.org/10.54105/ijam.B1177.05010425
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of 𝜙  is the minimal normal subgroup N generated by all 

elements of the form iαβ(ω)iβα(ω)−1 for ω ∈ π1(Aα ∩ Aβ,x0) 

so 𝜙 induces an 

isomorphism 

π1(X,x0)≅ 

π1(A1,x0) ∗ ... ∗ π1(An,x0)/N. 

 

Example 2.5. Let us use Van Kampen’s Theorem to show 

that the fundamental group of the n-sphere Sn is trivial: 

π1(Sn) = 0, for all n ≥ 2. Since Sn is path-connected, its 

fundamental group does not depend on the basepoint. 

Choose p = (0,...,0,1) and q = (0,0,...,−1) from Rn+1 and 

consider U = Sn − 

{p} and V = Sn − 

{q}. We know that Sn = U ∪ V is the union of open sets and U 

∩ V is path connected. Choose x0 ∈ 

U ∩ V. By Van Kampen’s theorem, there exists a surjective 

homomorphism from π1(U,x0)∗ π1(V,x0) onto π1(Sn,x0). 

Each open U and V being homomorphic to Rn (for n ≥ 2) 

are contractible. Hence π1(U,x0) = 0 and π1(V,x0) = 0. Then, 

their free product is a trivial group and so π1(Sn) = 0 for n ≥ 

2. 

Lemma 2.1. Let x∈ 

ℝ𝑛−{0}. Then π1(ℝ𝑛−0, x) =ℤ 

 if n = 2 and 

π1(ℝ𝑛−0,x) =0 if n > 2 

Proof. Note that ℝ𝑛 − {0} is homeomorphic to ℝ  × Sn−1 

therefore, using Proposition 2.5 and Definition 2.3 we see 

that  

π1(ℝ𝑛  − {0},x) ∼= 

π1(ℝ× Sn−1(p,q)) ∼= 

π1(ℝ,p) × π1(Sn−1,q) 

for some p ∈  ℝ, q ∈ Sn−1. Therefore, since π1(ℝ,p) = 0, we 

obtain 

π1(ℝ𝑛− {0}) ∼= π1(𝑆𝑛−1,x’) 

The claim then follows from our computation of the 

fundamental group of S1 by Theorem 2.2 and Example 2.5 

which gives the fundamental group of Sn, for n ≥ 2.   

III. CONTRIBUTION AND SOLUTIONS TO 

PROBLEMS 

We will use some main results of preliminaries to answer the 

problems mentioned above. 

A. Solution of Problem 1 

To answer the Problem 1, we prove the following theorem. 

Theorem 3.1. Le G is a topological group space and let 

L(G,e) be the loops set based on e. The fundamental group 

of G noted π1(G,e) is abelian. 

Proof. We can verify that the map 

L(G,e) × L(G,e) −→ 

L(G,e) 

(α, β)↦αβ 

permits us to make operations in the quotient space 

π1(G,e) × π1(G,e) −→ π1(G,e) 

For this, we remark that if α and 𝛼′ (respectively β and 𝛽′) 
are two homotopic loops, and H (respectively I) is a 

homotopy from α to 𝛼′ (resp. from β to 𝛽′), then the map 

(s,t)⟶H(s,t)I(s,t) is a homotopy from αβ to 𝛼′𝛽′. Now, let 

us note that the constant loop equal to e. Then by the 

concatenation definition, for all α,β ∈ L(G,e), we have the 

equality 

(α∗e)(e∗β) = α∗β.        (3.1) 

Likewise, we have 

(e∗α)(β∗e) = β∗α         (3.2) 

Moreover, since α ∗ e and e ∗ α are homotopic to α, and β ∗ 

e and e ∗ β are homotopic to β, we obtain that αβ is 

homotopic to both α ∗ β and β∗α. We conclude the the above 

map π1(G,e) × π1(G,e) −→ π1(G,e) 

coincides with the usual group law, and this makes this 

group law commutative. 

For this, we remark that if α and α0 (respectively β and β0) 

are two homotopic loops, and H (respectively I) is a 

homotopy from α to α0 (resp. from β to β0), then the map (s,t) 

↦H(s,t)I(s,t) is a homotopy from αβ to α0β0. Now, let us 

note that the constant loop equal to e. Then by the 

concatenation definition, for all α,β ∈ L(G,e), we have the 

equality 

(α∗e)(e∗β) = α∗β.            (3.1) 

Likewise, we have 

(e∗α)(β∗e) = β∗α             (3.2) 

Moreover, since α ∗ e and e ∗ α are homotopic to α, and β ∗ 

e and e ∗ β are homotopic to β, we obtain that αβ is 

homotopic to both α ∗ β and β∗α. We conclude the the above 

map π1(G,e) × π1(G,e) − → π1(G,e) 

coincides with the usual group law, and this makes this 

group law commutative.   

B. Solution of Problem 2 

Let p1,...,pn be n distinct points in ℝ2. Let us compute 

π1(ℝ2 − {p1,...,pn}).             (3.3) 

We are free to choose the base point x0. Let us choose x0 so 

that it does not lie on any line between two points in 

{p1,...,pn}. Let r˜j be the ray starting at x0 and going through 

pj; it follows from our choice of x0 that the n rays r˜1,...,r˜n 

are distinct. After renaming the points p1,...,pn we may 

assume that the rays r˜1,...,r˜n are ordered in a positive 

direction. Choose now rays r1,..., rn with start point x0 such 

that r1 lies between 𝑟𝑛  and 𝑟1  and 𝑟𝑗  for j ∈ {2,...,n} lies 

between 𝑟𝑗−1  and 𝑟𝑗 . Let 𝐴𝑛  be the infinite open wedge 

between r1 and rn containing 𝑟𝑛 −{x0}; similarly for j ∈ 

{1,...,n − 1} let 𝐴𝑗 j be the infinite open wedge between rj and 

rj+1 containing 𝑟𝑗 . Take 𝜖 > 0 small. Note that should be 

smaller than the distance between x0 and rj for each j. Let Aj 

be the open neighborhood of 𝐴𝑗 (this means that we consider 

the set of points in ℝ2 which have distance <  to some point 

in Aj), but with the point pj removed. 

We have now the following situation: 

 

▪ The objects A1,...,An are open and path connected 

subsets of X = ℝ2 − {p1,...,pn} 

▪ We  have X =⋃𝐽=1
𝑛 𝐴𝑗 and Aj ∩ Ak is path-connected 

for all j,k ∈{1,...,n} 

Hence Seifert VanKampen’s Theorem can be applied with 

A1,..., An, in particular, the natural 

homomorphism 

𝜙 : π1(A1,x0) ∗ ... ∗ π1(An,x0)  

−→ π1(X,x0) 

is surjective. 

http://doi.org/10.54105/ijam.B1177.05010425
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Moreover, for any j≠ k ∈ {1,...,n}, the set Aj ∩ Ak is simply 

connected i.e. π1(Aj ∩ Ak) = {e}. Hence Seifert VanKampen’s 

Theorem implies that 𝜙 is an isomorphism. Moreover, each 

Aj is homotopy equivalent with S1; hence π1(Aj) ∼=ℤ and so 

we conclude that 

π1(X,x0) ∼= ℤ∗ ... ∗ℤ 

(n-times) 

is a free group with n generators. These generators are 

[γ1],...,[γn], where γj is a loop that is contained in Aj and goes 

one time around pj. 

C. Solution of Problem 3 

Let us mention some spaces that are of the same homotopy 

as S1. We know that S1 is a deformation retract of the 

punctured plane ℝ2−{0}, hence π1(ℝ2 −{0}) = ℤ; moreover, 

by several examples in paragraph 2.6 the cylinder in general, 

the spaces S1 = {x ∈ 

ℝ2 : | x |> 1 and 

S2 = {x ∈ R2 : | x |≥ 

1} have the fundamental group isomorphic to the infinite 

cyclic group ℤ. In the same paragraph, we have shown that 

the solid torus S1 × B2 and the product space S1×S2 are 

isomorphic to ℤ. The same is true for the Mobius band. So, 

all these spaces whose fundamental groups are isomorphic to 

ℤ are of the same homotopy as S1. 

D. Solution of Problem 4 

We consider here the fundamental groups of the projective 

space ℝP^n   for n ≥ 2, the torus T = 

S 1×S1, the cylinder S1× ℝ, and the n- punctured plane for 

n > 1. Let us show that these surfaces and S2 are all 

topologically distinct. 

We know by Problem that the fundamental group of the real 

projective plane is ℤ2, The torus has ℤ×ℤ as the fundamental 

group, and the 2-sphere is simply connected, so π1(S2) = {0}. 

The fundamental group of the n-punctured plane is a free 

group with n generators (n > 1). By Proposition 2.9 all these 

spaces are topologically distinct. 

IV. CONCLUSION AND SUGGESTIONS 

We have just provided a contribution and solutions to the 

problems mentioned above. Our next research topic will be 

the etale fundamental group of an elliptic curve and 

homology result. 
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