
Indian Journal of Advanced Mathematics (IJAM) 

ISSN: 2582-8932 (Online), Volume-5 Issue-1, April 2025 

22

Published By: 

Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

Retrieval Number:100.1/ijam.A119105010425 
DOI: 10.54105/ijam.A1191.05010425 

Journal Website: www.ijam.latticescipub.com 

Abstract: In number theory, Fermat’s Last  Theorem  states  

that  no three positive integers  a, b  and  c satisfy the equation an  

+ bn  = cn where n is any integer > 2. Fermat and Euler had

already proved that there are no integral solutions to the

equations        x3 + y3 = z3 and x4 + y4 = z4. Hence it would suffice

to prove the theorem for the index  n = p, where p is any prime >

3. In this proof, we have hypothesized that r,  s and t are positive

integers in the equation rp  + sp  = tp where p is any prime >3 and

prove the theorem using the method of contradiction. We have

used an Auxiliary equations x3 + y3 = z3 along with the main

equation rp + sp = tp, which are connected by means of

transformation equation through the parameters. Solving the

through transformation equations we get the result rst = 0,

showing that only a trivial solution exists in the main equation.
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I. INTRODUCTION

During 1637, the French mathematician Pierre de

Fermat conjectured in the margin of  a book  that  the 

equation  xn  + yn   =  zn  has   no integral solutions for x,  y 

and z, where n  > 2 [1].  He mentioned therein that he 

himself had found a marvelous solution to xn + yn = zn, with 

n > 2, but the margin was too narrow to contain it. However 

his proof is available only for x4 + y4 = z4 using infinite 

decent method [2]. Subsequently Euler and others proved 

the theorem for x3 + y3 = z3. Later on Sophie Germain 

proved the theorem for a general case, and subsequently E.E 

[3]. Kummer proved the theorem for regular primes [4]. 

Many mathematicians worked on this theorem by which 

number theory developed leaps and bounds [5]. 

Mathematicians found a close relationship between Fermat's 

Last theorem and Elliptic curve [6]. Finally in 1995 Andrew 

Wiles proved the theorem completely [7]. Many 

mathematicians have analysed and explained the theorem in 

all aspects [8]. In this paper we are trying for an alternative 

elementary proof for Fermat’s Last theorem [9].   
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II. ASSUMPTIONS

A. We initially hypothesize that all r, s and t are non-

zero integers satisfying the equation rp  + sp  = tp where

p is any prime > 3, and establish a contradiction in

this proof. We can have gcd(r, s, t) = 1

B. We  employ the Auxiliary equation x3  + y3  = z3; along

with the main equation  rp  + sp  = tp Since we are

proving the theorem only in the main equation, we

have the choice of assigning suitable numerical values

for x, y and z3. Without loss of generality we can have

x and y as positive integers; z3 a  positive integer; both

z and z2 irrational. In this proof we have assigned the

values as x =53; y = 11; z3 = 533 +113 = 82 × 2347. We

have created transformation equations to the above two

equations and linked them through parameters called a,

b, c, d, e and f.

C. F, E and R are distinct odd primes; each coprime to x,

y, z3, r. s and t.

Proof.  By random trials, we have created the following 

equations, 

( ) ( ) ( )
2 22

1/ 3 5/ 311 2347 53pa t b E c d F e E f+ + + = +  (1)(i) 

and 

( ) ( ) ( )
2 22

5/ 3 1/ 3p pa F b E c r d R e s f R− + − = −    (1)(ii) 

as the transformation equations of x3 + y3 = z3 and rp + sp 

= tp respectively, through the parameters called a, b, c, d, e 

and f. Here x = 53; y = 11; and z3 = x3 +y3 = 533 + 113 = 82× 

2347. F, E and R are distinct odd primes, each coprimes, 

each coprime to x, y, z3, r, s and t. 

From equation (1-i) and (1-ii, we get 

1/ 3 3  11pa t b E x+ =        (2) 

pa F b E r− = (3) 

32347c d F y+ = (4) 

5/ 3p pc r d R s− = (5) 

5/ 3 353e E f z+ = (6) 

and 1/ 3p pe s f R t− =        (7) 

Solving simultaneously (2) and (3), (4) and (5), (6) and 

(7), we get  

( ) ( )3 1/ 3 1/ 311 11p pa Ex E r Et FE= + +
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( ) ( )3 1/ 311p p pb Fx r t Et FE= − +  

( ) ( )5/ 3 3 5/ 32347p pc R y Fs Fr R= + +  

( ) ( )3 5/ 32347 2347p p pd r y s Fr R= − +  

( ) ( )1/ 3 3 5/ 3 1/ 353 53p pe R z t s E R= + +  

and      ( ) ( )3 5/ 3 5/ 3 1/ 353p p pf z s E t s E R= − +  

From (3) & (5), we have 

( )( ) ( )5/ 3p p pr r a F b E s d R c = − +
 

( ) ( ) ( ) ( )  ( )5/ 3 5/ 3i.e., p p pr a Fs ad FR b Es bd ER c= + − −

From (5) & (7), we get 

                      ( )( ) ( )5/ 3 1/ 3p p p ps s c r d R t f R e = − +
 

( ) ( ) ( ) ( )  ( )1/ 3 5/ 3i.e., p p p p ps c r t cf R r d R t df R e= + − −  

From (2) & (7), we get 

                       ( )( ) ( )3 1/ 3 1/ 311p p pt t x b E e s f R a = − −
 

( ) ( ) ( ) ( )  ( )3 1/ 3 3 1/ 3 1/ 3 1/ 3i.e., 11 11p p pt e x s f R x be E s bf E R a= − − +  

On substituting the above equivalent values of rp, sp and tp in the Fermat’s equation tp = rp + sp after multiplying both sides 

by ( ) ace , we get  

( )  ( ) ( ) ( ) ( ) 3 1/ 3 3 1/ 3 1/ 3 1/ 311 11p pce e x s f R x be E s bf E R− − +
 

  ( ) ( ) ( ) ( ) 5/ 3 5/ 3p pae a Fs ad FR b Es bd ER= + − −
 

( )  ( ) ( ) ( ) ( ) 1/ 3 5/ 3p p p pac c r t cf R r d R t df R+ + − −  (8) 

Our purpose is to compute all rational terms in equation (8) and equate them an both sides, after multiplying both sides by 

( ) ( ) ( )
2 2 2

1/ 3 5/ 3 5/ 3 1/ 311 2347 53p p pEt FE Fr R s E R+ + +  

for freeing from denominators on the parameters a, b, c, d, e and f , and again multiplying both sides by ( )1/ 3E y  for 

obtaining some rational terms, as worked out hereunder term by term. 

I term in LHS of equation (8), after multiplying by the respective terms and substituting for {ce2}  

( ) ( ) ( )3 1/ 3 2 / 3 5/ 311 2 11 2347p p p px s Et FE E Ft Fr R= + + +  

( )( ) ( ) ( ) 1/ 3 5/ 3 3 1/ 3 3 1/ 3 353 2 53p p pE y R y Fs R z t R z t + + +  

On multiplying by 

( ) ( ) ( ) 3 2 / 3 5/ 3 1/ 3 1/ 3 32 11 2347 2 53p p p px s E Ft R E y Fs R z t  

We get 

( ) 3 34 53 11 2347p pFERs t x y z  

II term in LHS of equation (8), after multiplying by the respective terms and substituting for {c(ef)} 
 ( ) ( ) ( ) ( )1/ 3 3 1/ 3 2 / 3 5/ 311 2 11 2347p p pR x Et FE E Ft Fr R= − + + +  

( )( )( )( )1/ 3 5/ 3 3 1/ 3 3 3 5/ 353p p p pE y R y Fs R z t z s E t + + −  

Rational part in this term 

( )( ) ( ) 1/ 3 3 2 / 3 5 / 3 1/ 3 32 11 2347 53p p p pR x E Ft R E y Fs t z s= −  

( ) 3 32 53 11 2347p pFERs t x y z= −  

III term in LHS of equation (8), after multiplying by the respective terms and substituting  
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for {bce2}  

( )( )( )( )1/ 3 1/ 3 5/ 3 311 11 2347p p p p pE s Et FE Fr R Fx r t= − + + −  

( )( ) ( ) ( ) 1/ 3 5/ 3 3 1/ 3 3 1/ 3 353 2 53p p pE y R y Fs R z t R z t + + +  

Rational part in this term 

( ) ( ) ( ) 1/ 3 5/ 3 3 1/ 3 1/ 3 311 2347 2 53p p p pE s Et R Fx E y Fs R z t= −  

( ) 3 32 53 11 2347p pFERs t x y z= −  

IV term in LHS of equation (8), after multiplying by the respective terms and substituting for {bc(ef)}  

( )( )( )( )1/ 3 1/ 3 1/ 3 5/ 3 311 11 2347p p p pE R Et FE Fr R Fx r t= + + −  

( )( )( )( )1/ 3 5/ 3 3 1/ 3 3 3 5/ 353p p p pE y R y Fs R z t z s E t + + −  

Rational part in this term  

( ) 1/ 3 1/ 3 5/ 3 3 1/ 3 311 2347 53p p p pE R Et R Fx E y Fs t z s=  

 
( ) 3 353 11 2347p pFERs t x y z=  

I term in RHS of equation (8), after multiplying by the respective terms and substituting for {a2e}  

( ) ( ) ( )5/ 3 5/ 3 5/ 3 1/ 32347 2 2347 53p p p pFs R Fr R Fr E R s= + + +  

( )( ) ( ) ( ) 1/ 3 1/ 3 3 3 1/ 3 2 / 3 353 11 2 11p p pE y R z t Ex E r E x r + + +  

Rational part in this term 

( ) ( ) ( ) 5/ 3 1/ 3 1/ 3 3 2 / 3 32 2347 53 2 11p p p pFs R Fr s E y R z E x r=  

( ) 3 34 53 11 2347p pFERr s x y z=  

II term in RHS of equation (8), after multiplying by the respective terms and substituting for {(a2de}  

 

( )( )( )5/ 3 5/ 3 5/ 3 1/ 3 1/ 32347 53p pFR R Fr E R s E y= + +  

( ) ( ) ( )( )3 1/ 3 2 / 3 3 3 1/ 3 311 2 11 2347 53p p p p pEx E r E x r r y s R z t + + − +  

 

Rational part in this term 

( )( )( ) 5/ 3 1/ 3 2 / 3 3 1/ 3 353 2 11 2347p p p pFR Fr s E y E x r s R z= −
 

We get
 

( ) 3 32 53 11 2347p pFERr s x y z−  

III term in RHS of equation (8), after multiplying by the respective terms and substituting for {(ab)e}  

( ) ( ) ( ) ( )5/ 3 5/ 3 5/ 3 1/ 32347 2 2347 53p p p pEs R Fr R Fr E R s= − + + +  

( )( )( )( )1/ 3 1/ 3 3 3 1/ 3 353 11p p p pE y R z t Ex E r Fx r t + + −  

Rational part in this term 

          
( )( ) ( ) 5/ 3 1/ 3 1/ 3 3 1/ 3 32 2347 53 11p p p pEs R Fr s E y R z E r Fx= −

 

( ) 3 32 53 11 2347p pFERr s x y z= −  

IV term in RHS of equation (8), after multiplying by the respective terms and substituting for {(ab)de} 

( )( )( )( )5/ 3 5/ 3 5/ 3 1/ 3 1/ 32347 53p pER R Fr E R s E y= − + +  

( )( )( )( )3 1/ 3 3 3 1/ 3 311 2347 53p p p p p pEx E r Fx r t r y s R z t + − − +  

Rational part in this term 

      
( ) ( ) ( ) 5/ 3 1/ 3 1/ 3 3 1/ 3 353 11 2347p p p pER Fr s E y E r Fx s R z= − −
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( ) 3 353 11 2347p pFERr s x y z=  

V term in RHS of equation (8), after multiplying by the respective terms and substituting for {ac2} 

( ) ( ) ( ) 1/ 3 5/ 3 1/ 3 5/ 3 1/ 311 53 2 53p p p p pr t Et FE E R s E R s= + + +  

( )( ) ( ) ( ) 1/ 3 3 1/ 3 5/ 3 3 5/ 3 311 2p p pE y Ex E r R y Fs R y Fs + + +  

(i)   Rational part in this term 

( )( ) ( ) 1/ 3 1/ 353 11p p p p p pr t Et s E y E r Fs=  

( ) 253 11p p pFEr s t y= 
 

(ii)  Further on multiplying by 

( )( ) ( ) 5/ 3 1/ 3 1/ 3 3 5/ 3 3p p pr t Et E R E y Ex R y=
 

( ) 3 2 3 p pE R xy t r xy=  

Which will be irrational if r is coprime to x = 53 and y = 11; if not, we have the choice of assigning alternative values for x 

and y such that x = 17; y = 47, z3 = 173 + 47 = 82 × 1699, such that  r is coprime to 17 and 47. 

VI term in RHS of equation (8), after multiplying by the respective terms and substituting for {ac2f} is 

( )( )( )1/ 3 1/ 3 5/ 3 1/ 3 1/ 311 53p p pR r Et EF E R s E y= + +  

( ) ( ) ( ) ( )3 1/ 3 5/ 3 3 5/ 3 3 3 5/ 311 2p p p p pEx E r R y Fs R y Fs z s E t + + + −
 

On multiplying by 

( ) ( )( ) 1/ 3 5/ 3 1/ 3 1/ 3 1/ 3 5/ 3 3 5/ 311p p p pR r Et E R E y E r R y E t−
 

We get 

( ) 8/ 3 2 3 11p pE R y r t y−  

Which will be irrational since E is an odd prime. 

VII term in RHS of equation (8), after multiplying by the respective terms and substituting for {a(cd)} is
 

( )( ) ( ) ( ) ( )5/ 3 1/ 3 5/ 3 1/ 3 5/ 3 1/ 3 1/ 311 53 2 53p p p pR t Et FE E R s E R s E y= − + + + +  

( )( )( )3 1/ 3 5/ 3 3 311 2347p p p pEx E r R y Fs y r s + + −
 

On multiplying by 

( ) ( )( ) 5/ 3 5/ 3 1/ 3 1/ 3 1/ 3 5/ 3 3 311p p p pR t Et E R E y E r R y y r−
 

We get 

( ) 8/ 3 2 3 11p pE R y r t y−  

Which is irrational. 

VIII term in RHS of equation (8), after multiplying by the respective terms and substituting for {a(cd)f} is 

( )( )( )( )1/ 3 5/ 3 1/ 3 1/ 311 53p pR Et FE E R s E y= − + +  

( )( )( )( )3 1/ 3 5/ 3 3 3 3 5/ 311 2347p p p p p pEx E r R y Fs y r s z s E t + + − −
 

On multiplying by 

( ) ( ) ( ) 1/ 3 1/ 3 3 311 53 2347p p p pR FE s E y Ex Fs s z s= − −
 

( ) 2 3 353 11 2347pFERs x y z=  

Sum of all rational terms on LHS of equation (8) 

( ) 3 353 11 2347p pFERs t x y z=
 

 

Sum of all rational terms on RHS of equation (8) 

( ) 3 353 11 2347p pFERr s x y z=  (combining I to IV terms) 

( ) 253 11p p pFEr s t y+   (vide V term) 
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( ) 2 3 353 11 2347pFERs x y z+  (vide VI term) 

( ) ( )3 353 11 2347p p pFERs x y z r s= +  

                            ( ) 253 11p p pFEr s t y+  

( )  ( )3 353 11 2347p p p p pFERs t x y z r s t= + =  

                            ( ) 253 11p p pFEr s t y+  

Equating the rational terms on both sides of equation (8),  we get 

       ( ) 253 11 0p p pFEr s t y =  

Dividing both sides by 

( )53 11FE y  

We get 

( )2 0p p pr s t =  

That is, either  r = 0; or s = 0; or t = 0. 

This contradicts our hypothesis that all r, s and t are non-zero integers in the equation rp + sp = tp, with p any prime > 3, 

thus proving that only a trivial solution exists in the equation. 

III. CONCLUSION 

In this proof equation (8) has been obtained from the two 

transformation equations for x3 + y3 = z3 and rp + sp = tp.  by 

using the equivalent values of rp, sp & tp, which are 

substituted in the equation rp + sp = tp. Hence the result rst = 

0, that we get from equation (8) proves that there is no non-

zero integer solutions exists in the equation rp + sp = tp.  
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