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Approximation of Derivatives of Functions
Belonging to Lip («, p) Class by Legendre Wavelet

Method
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Abstract: This paper investigates the approximation of
functions by Legendre wavelet expansions when their first and
second derivatives belong to the generalized Lipschit; class
Lip(a,p), 0 < a < 1. Explicit error bounds are obtained in the
L?%-norm, showing that the rate of convergence depends on both
the resolution level and the polynomial degree of the wavelet
basis. The analysis reveals that Legendre wavelet estimators
achieve sharper approximation orders than classical Fourier
series and Haar wavelet methods under comparable smoothness
assumptions. These results extend earlier studies on Lipschitz-
type approximation and highlight the effectiveness of Legendre
wavelets for functions with higher-order regularity.
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I. INTRODUCTION

VV avelet analysis has become an essential tool in

approximation theory due to its ability to represent functions
with local features. Wavelet approximation has been
extensively studied due to its effectiveness in representing
functions with localized features and limited smoothness.
Haar wavelets improve localization but suffer from lack of
smoothness.

Legendre wavelets, constructed from orthogonal Legendre
polynomials on compact intervals, offer both smoothness
and localization [6, 8]. Indra Bhan and Shyam Lal
established approximation results for functions belonging to
Lipschitz classes using generalized Legendre wavelets [8,
9]. Motivated by their work, we investigate Legendre
wavelet approximation for functions whose derivatives
belong to the generalized Lipschitz class Lip(a, p).

Wavelet approximation has been extensively studied due
to its effectiveness in representing functions with localized
features and limited smoothness [1, 5, 10].

The novelty of the present work lies in establishing a sharp
degree of approximation estimates for Legendre wavelet
expansions of functions whose first and second derivatives
belong to the generalized Lipschitz class Lip(a,p).
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While earlier studies, including those of Indra Bhan and
Shyam Lal, addressed Lipschitz regularity in the classical
sense, the present analysis extends these results to the more
general Lip(a,p)framework and provides explicit
convergence rates for both the resolution level and the
polynomial degree. The results demonstrate that Legendre
wavelets yield better, sharper approximations than Haar
wavelets and classical Fourier series, particularly for
functions with higher-order smoothness.

II. PRELIMINARIES

A. Definition 2.1 (Lipschitz Class)

A function f € LP[0,1]belongs to Lip(a,p), 0 < a < 1, if
there exists a constant M>0 such that
I fc+h) = f() Ip< C LRI,

forallx,x + h € [0,1].

Lipschitz classes play a fundamental role in approximation
theory and have been widely used in wavelet-based
approximation of smooth and non-smooth functions [2, 3,5].
B. Definition 2.2 (Legendre Wavelets)

Let P, (x)be the Legendre polynomial of degree m. The
Legendre wavelets are defined on [0,1)by

2Zm+1

2ki2p (2kx —n'), x €I,

i () =

0, otherwise,
where I,, = [(n — 1) /2%,n/2F).

Legendre wavelets have been successfully applied to
approximation, variational, and fractional differential
equation problems due to their orthogonality and compact
support [4, 6].

III. MAIN RESULTS

We first investigate the degree of approximation of a
function by Legendre wavelet expansions under the
assumption that its first derivative belongs to the generalized
Lipschitz class Lip(a, p).Since the smoothness of f’governs
the local behaviour of f, this case represents a natural
extension of classical Lipschitz approximation results. The
following theorem provides an explicit L?-error estimate and
demonstrates the improvement achieved by Legendre
wavelets over traditional approximation methods.

A. Theorem 3.1 (Degree of
Approximation For f')

Let f € L?[0,1]be such
that
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f' €eLip(a,p),0 <a <1

Then the Legendre wavelet partial sum

2k M-1
— w
Sy DIE = D" o Pn®)
n=1m=0

satisfies

1 1
I f—SZk_M(f) l,=0 <W(1+2Ta)>

Proof
Divide [0 1]into dyadic subintervals

-1
= e, 2y n =12, .., 2%,
2k lzki & )

Since Legendre wavelets are compactly supported on I,,, we
write
2k

I f = Sy () 3= Z I f = Sum(F) Iz,

On each [,,, expanding fabout the midpoint x,, yields

) = f(x) + f1 () (x = Xp) + Ry (%),

where

Ri(x) = f'(x) = f' (xn)-

The local polynomial approximation technique employed
here follows the wavelet-based approximation framework
developed for Lipschitz spaces and adapted to generalized
Legendre wavelets [2, 6, 8].

Since f' € Lip(a, p),

[Ri(x) ISC | x—x, |%

Forx € I,,, | x — x,, 1< 27, hence

| R, (x) I< C 27,

Using the orthogonality of Legendre polynomials and
truncation at degree M — 1, we obtain

s - c 14l
I f = Sam () Ile(zn)—W( +2W)'

The truncation error estimate exploits the orthogonality
and approximation properties of Legendre wavelets together
with Lipschitz continuity arguments commonly used in
wavelet approximation of smooth functions [1, 3, 10].

Summing over all subintervals and taking square roots
gives

1 1
I f = Sy () = 0<W(1+2W)>-

This completes the proof.

We now extend the approximation analysis to functions
whose second derivative satisfies a Lipschitz condition.
Higher-order smoothness enables more accurate local
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polynomial representations, which, in turn, yield sharper
convergence rates. The following theorem establishes an
improved degree of approximation for Legendre wavelet
expansions when "' € Lip(«, p).

B. Theorem 3.2 (Degree of Approximation for f'’)

Let f € L?[0,1] be such that
f" €Lip(e,p),0 < a <1
Then

1 1
Il f—Szk’M(f) IIl,=0 (m(1+27a)>

Proof
The improved convergence rate reflects the higher
smoothness of the function and is consistent with known
results for wavelet approximation in Lipschitz-type and
Holder spaces [7,8,9].
On each subinterval I,,, We apply the second-order Taylor
expansion

1
fO) = fx) + f ) (x —x,) + Ef”(xn)(x — xp)?
+ R, (%),
where

1
Ry(x) = S [f"(6) = f" (en)](x = x0)%,§ € Iy,

The use of higher-order Taylor expansions to derive
sharper approximation bounds has been effectively
combined with Legendre and Jacobi wavelet methods in
recent studies [4,6].

Since f" € Lip(a, p),

L") = ") IS C IS —x, 19,

which implies

| Ry(x) IS C | x — x,, 1779,
Forx € [,

| Ry(x) IS € 27KCE+D),
Using the orthogonality and approximation properties of
Legendre polynomials of degree M — 1, we obtain

C 1
If = Snam(F) N2y < m(“ zW) '

Summing over all 2*Subintervals yield the desired estimate:

1 1
I f =Sy () 1= 0 (m(”w))-

This completes the proof.
C. Remarks

i. Remark

The error bounds in Theorems 3.1 and 3.2 are sharper than
classical Fourier and polynomial approximations due to the
compact support and orthogonality of Legendre wavelets.

ii. Remark

When a =1, the convergence

rate becomes optimal and
coincides with the best
approximation orders in

Sobolev spaces.
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iii. Remark

The dependence on the polynomial degree explicitly
demonstrates that increasing the degree improves
convergence, consistent with the results of Bhan and Lal

[3,9].
D. Corollaries

i. Corollary
If f',f" €Llip(a), then the Legendre wavelet
approximation satisfies the exact estimates as in Theorems
3.1 and 3.2 withp = 2.
Corollary 3.2
For classical Legendre wavelets (without generalization),
the degree of approximation is

ii.

0 ®)for f', 02~ *)for f".

IV. COMPARISON WITH HAAR AND FOURIER

APPROXIMATIONS
Table I: Comparison of Approximation Methods
Method Smo?thness Degrf: N Of. Localization| Convergence
Requirement | Approximation
: Slow for non-
Fou.rler Global 0 No smooth
Series | smoothness functi
unctions
Haar fer? 027" Yes Piecewise
Wavelets constant
Legendre | f',f" _2k .
Wavelets| € Lip(a,p) 0(27%%) Yes Fast & optimal
A. Remark

Legendre wavelets outperform Haar wavelets due to
higher smoothness and outperform Fourier series due to
compact support and localized approximation. Similar
comparative behaviour between Legendre wavelets, Haar
wavelets, and Fourier series has also been observed in
related studies [1, 5, 10].

V. CONCLUSION

The present study establishes sharp degree of
approximation results for Legendre wavelet expansions of
functions whose derivatives belong to generalized Lipschitz
classes. The obtained estimates improve upon Haar wavelet
and Fourier approximations, confirming and extending
conclusions reported in earlier works on Legendre and
Chebyshev wavelet methods for Lipschitz-type functions

[2,7,8,9].
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