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Abstract:. The primary aim of this article is Generalization 

leading to search of integrals of the type∫
𝒍𝒐𝒈𝑷

𝒍𝒐𝒈𝑸
𝒅𝒙 = ∫𝑭𝑮𝒏𝒅𝒙 

where both P, Q are functions of x only and also verification of  

results by using new trend. In this direction of verification, 

converting integrals into ordinary differential equations and 

finding the solutions, has significant trend and fresh impetus in 

the recent years. In this paper, along with the generalization of 

integrals, formation of ordinary differential equations and their 

solutions were also listed. Here in this article we obtained 

significant differential equations based on integrals of Russell [1], 

type. In the first part, generalizations of preliminary lemmas along 

with new integrals of logarithmic integrand were evaluated on the 

lines Mark Coffy [4]. Then first order linear differential equations 

were obtained for such integrals, to verify the truth of the 

solutions.     

Keywords: Beta-functions, Definite Integrals, First order linear 

Differential Equations. Gamma-functions, Taylor Series,  

Ordinary Differential Equations. 

I. INTRODUCTION 

In recent years applications of integrals and 

generalizations, has took a significant new trend, and 

different approaches since from its inception in the research 

papers of Mark Coffy and Moli [3],[4]. These researches 

have included many facts connected with convergence of 

Series, Hyperbolic Functions, Beta Gamma functions[7] and 

many more leading to self –reciprocal Fourier 

Transformers[7,8]     

In their results Russell style of integrals, were presented. 

But such Russell style of integrals initiated new fresh impetus 

in multiple directions and applications of definite integrals, 

creating new trend and interesting results in recent years.  

Creation of new trend and significant results concerning 

with differential equations, is the prime focus of this research 

article. In this article we presented the results, as the initial 

approach with another intension of unveiling pros and cons of 

Russell style integrals. The idea of Russell type integrals 

involves representing F(x) as∫𝑃𝑄𝑛𝑑𝑥.  The infinite series of 

integrand is obtained, then the summation and integration are 

interchanged to obtain integral value in terms of sum of 

series. Then the series so obtained converge to known 

functions. Earlier authors mentioned that the study of such 

type of  integrals have many applications in the calculation of 

hyper volumes, Feynman diagrams[9], and have the origin in 
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the research article “On the theory of Definite Integrals “, by 

W H L Russell [1][2] leads to several significant researches. 

It took fresh impetus gradually, by various authors.  Among 

these, T Amdeberhan and V H Moli [3] pointed out dozen 

integrals, which were prime focus of many researchers. Here 

we are not targeted to solve any specific problems, taking 

ideas from survey of earlier research papers, but focused on 

providing a subject of new investigations. My efforts to 

pursue integrals by constructing differential equations [5] [6]  

using Leibnitz rule [10] and then solving these differential 

equations by different techniques were successful. The 

results listed in this paper; at the outset has simple 

consequences of earlier results, but in the latter part new 

results were incorporated. 

Lemma 1: [4]      ∫ 𝜃𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃
𝜋

0
=

𝜋

2𝑛+1
 

Proof: I2n= ∫ 𝜃𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃
𝜋

0
 

               =∫ (𝜋 − 𝜃)𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃
𝜋

0
 

                            =   𝜋 ∫ 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃 − 𝐼2𝑛
𝜋

0
 

=> 2𝐼2𝑛 =  𝜋∫ 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃
𝜋

0

 

        𝐼2𝑛 = 𝜋 [
−(𝑐𝑜𝑠𝜃)2𝑛+1

2𝑛+1
]
0

𝜋/2

=
𝜋

2𝑛+1
                                     …(1.1) 

Lemma 2 [4]:       ∫
𝜃𝑠𝑖𝑛𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
𝑑𝜃 =

𝜋

𝑥
 𝑡𝑎𝑛ℎ−1𝑥     

Proof:   ∫
𝜃𝑠𝑖𝑛𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
𝑑𝜃 = 

∫ 𝜃𝑠𝑖𝑛𝜃∑𝑥2𝑛
∞

𝑛=0

(𝑐𝑜𝑠𝜃)2𝑛
𝜋

0

𝑑𝜃 

 =∑ 𝑥2𝑛∞
𝑛=0 ∫ 𝜃𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛

𝜋

0
𝑑𝜃                                 ….(1.2) 

Substituting (1.1) in (1.2), one can obtain 

= ∑ 𝑥2𝑛∞
𝑛=0

𝜋

(2𝑛+1)
      =

𝜋

𝑥
∑

𝑥2𝑛+1

(2𝑛+1)
∞
𝑛=0        

= 
𝜋

𝑥
 𝑡𝑎𝑛ℎ−1𝑥    

 Thus we see that,                                                    ∫
𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
 

= ∑
𝑥2𝑛𝜋

2𝑛+1

∞
𝑛=0   =  

𝜋

𝑥
∑

𝑥2𝑛+1

2𝑛+1

∞
𝑛=0  =  

𝜋

𝑥
𝑡𝑎𝑛ℎ−1𝑥    =

𝜋

𝑥
𝑙𝑜𝑔 (

1+𝑥

1−𝑥
) 

Lemma 3:    ∫
𝜃2𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
= 

∑
𝑥2𝑛

(2𝑛 + 1)

∞

𝑛=0

(2∫ 𝜃𝑠𝑖𝑛𝜃(co 𝑠2𝑛+1(𝜃))𝑑𝜃 − 𝜋2

𝜋

0

) 

Proof:     ∫
𝜃2𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
   = 

∑ 𝑥2𝑛∞
𝑛=0 ∫ 𝜃2𝑠𝑖𝑛𝜃(co 𝑠2𝑛(𝜃))𝑑𝜃

𝜋

0
    

Integrating by parts, taking u=𝜃2(co 𝑠2𝑛(𝜃))   and v= 𝑠𝑖𝑛𝜃 ,  

we get,  ∑
𝑥2𝑛

(2𝑛+1)
∞
𝑛=0   (2 ∫ 𝜃𝑠𝑖𝑛𝜃(co 𝑠2𝑛+1(𝜃))𝑑𝜃 −

𝜋

0

𝜋2)=−𝜋2∑
𝑥2𝑛

(2𝑛+1)
+∞

𝑛=0   
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(2∑
𝑥2𝑛

(2𝑛+1)
∞
𝑛=0 ∫ 𝜃𝑠𝑖𝑛𝜃(co 𝑠2𝑛+1(𝜃))𝑑𝜃

𝜋

0
)               …(1.3) 

In equation (1.3)  the first part −𝜋2∑
𝑥2𝑛

(2𝑛+1)
∞
𝑛=0   

 =
−𝜋2

𝑥
∑

𝑥2𝑛+1

(2𝑛+1)
=

−𝜋2

𝑥
𝑡𝑎𝑛ℎ−1𝑥∞

𝑛=0                                  …(1.4) 

and for the second part of (1.3),  consider  

I=∫ 𝜃𝑠𝑖𝑛𝜃(co 𝑠2𝑛+1(𝜃))𝑑𝜃 
𝜋

0
integrating by parts gives the 

following result. 

                                 I=∫ 𝜃𝑠𝑖𝑛𝜃(co 𝑠2𝑛+1(𝜃))𝑑𝜃 
𝜋

0
 

  = [𝑡𝑐𝑜𝑠2𝑛+1𝑡(−𝑐𝑜𝑠𝑡)] +0
𝜋  

∫ 𝑐𝑜𝑠𝑡[𝑐𝑜𝑠2𝑛+1𝑡 + (2𝑛 + 1)𝑡𝑐𝑜𝑠2𝑛𝑡(−𝑠𝑖𝑛𝑡)]𝑑𝑡
𝜋

0

 

          =𝜋 + ∫ 𝑐𝑜𝑠2𝑛+2𝑡𝑑𝑡
𝜋

0
 

−∫ (2𝑛 + 1)𝑡𝑐𝑜𝑠2𝑛𝑡(𝑠𝑖𝑛𝑡)𝑑𝑡
𝜋

0

 

Hence ∫ 𝑡𝑐𝑜𝑠2𝑛𝑡(𝑠𝑖𝑛𝑡)𝑑𝑡
𝜋

0
  

=
1

2(𝑛 + 1)
{𝜋 + ∫ 𝑐𝑜𝑠2𝑛+2𝑡𝑑𝑡

𝜋

0

} 

  =
𝜋

2(𝑛+1)
+

𝜋

2(𝑛+1)

𝛽(
1

2
,
2𝑛+1

2
)((−1)2𝑛+1)

2
                            …(1.5) 

Using (1.4) and (1.5) in (1.3), we note that  

∫
𝜃2𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
  =

−𝜋2

𝑥
𝑡𝑎𝑛ℎ−1𝑥 

+∑
𝑥2𝑛

2𝑛 + 1
[

𝜋

2(𝑛 + 1)

∞

𝑛=0

+
𝜋

2(𝑛 + 1)

𝛽(
1
2
,
2𝑛 + 1
2

) ((−1)2𝑛 + 1)

2
] 

    =  
−𝜋2

𝑥
𝑡𝑎𝑛ℎ−1𝑥 +

𝜋

2𝑥
∑

𝑥2𝑛+1

(2𝑛+1)(𝑛+1)

∞
𝑛=0  

+
𝜋

2𝑥
∑

𝑥2𝑛+1

(2𝑛 + 1)(𝑛 + 1)

𝛽(
1
2
,
2𝑛 + 1
2

) ((−1)2𝑛 + 1)

2

∝

𝑛=0
 

   =
−𝜋2

𝑥
𝑡𝑎𝑛ℎ−1𝑥 +

𝜋

2𝑥
∑ 𝑥2𝑛+1 [

2

(2𝑛+1)
−

1

(𝑛+1)
]∞

𝑛=0  

    +
𝜋

2𝑥
∑ 𝑥2𝑛+1 [

2

(2𝑛+1)
−

1

(𝑛+1)
]
𝛽(
1

2
,
2𝑛+1

2
)((−1)2𝑛+1)

2

∝
𝑛=0  

    =
𝜋−𝜋2

𝑥
𝑡𝑎𝑛ℎ−1𝑥 −

𝜋

2𝑥
∑ [

𝑥2𝑛+1

(𝑛+1)
]∞

𝑛=0  

+
𝜋

2𝑥
∑ 𝑥2𝑛+1 [

2

(2𝑛+1)
−

1

(𝑛+1)
]
𝛽(
1

2
,
2𝑛+1

2
)((−1)2𝑛+1)

2

∝
𝑛=0  

=(
𝜋−𝜋2

𝑥
+

𝜋

2𝑥
𝛽(

1

2
,
2𝑛+1

2
) ((−1)2𝑛 + 1)) 𝑡𝑎𝑛ℎ−1𝑥 

−
𝜋

2𝑥
∑ [

𝑥2𝑛+1

(𝑛 + 1)
]

∞

𝑛=0

 

(1 +
𝛽(
1
2
,
2𝑛 + 1
2

) ((−1)2𝑛 + 1)

2
) 

We set a distinct result here to give rise to another view of 

generalization 

Lemma 4 . ∫
(1−𝑥𝑐𝑜𝑠𝜃)𝜃𝑠𝑖𝑛𝜃𝑑𝜃

(1+𝑥𝑐𝑜𝑠𝜃)

𝜋

0
  

=
2

𝜋

{
 
 

 
 

∫
𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1 − 𝑥2𝑐𝑜𝑠2𝜃

𝜋

0

+𝑥2∫
𝜃𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1 − 𝑥2𝑐𝑜𝑠2𝜃

𝜋

0 }
 
 

 
 

 

     =
4

𝑥
(𝑡𝑎𝑛ℎ−1𝑥 −

1

2
) 

Proof: 𝐼(𝑥) = ∫
(1+𝑥𝑐𝑜𝑠𝜃)𝜃𝑠𝑖𝑛𝜃𝑑𝜃

(1−𝑥𝑐𝑜𝑠𝜃)

𝜋

0
 

= ∫
(1 + 𝑥𝑐𝑜𝑠(𝜋 − 𝜃))(𝜋 − 𝜃)sin (𝜋 − 𝜃)𝑑𝜃

(1 − 𝑥𝑐𝑜𝑠(𝜋 − 𝜃))

𝜋

0

 

 =∫
(1−𝑥𝑐𝑜𝑠𝜃)(𝜋−𝜃)𝑠𝑖𝑛𝜃𝑑𝜃

(1+𝑥𝑐𝑜𝑠𝜃)

𝜋

0
 

=𝜋 ∫
(1−𝑥𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑑𝜃

(1+𝑥𝑐𝑜𝑠𝜃)

𝜋

0
 

−∫
(1 − 𝑥𝑐𝑜𝑠𝜃)𝜃𝑠𝑖𝑛𝜃𝑑𝜃

(1 + 𝑥𝑐𝑜𝑠𝜃)

𝜋

0

 

=> 𝜋 ∫
(1−𝑥𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑑𝜃

(1+𝑥𝑐𝑜𝑠𝜃)

𝜋

0
 

= ∫(
(1 + 𝑥𝑐𝑜𝑠𝜃)

(1 − 𝑥𝑐𝑜𝑠𝜃)
+
(1 − 𝑥𝑐𝑜𝑠𝜃)

(1 + 𝑥𝑐𝑜𝑠𝜃)
) 𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0

 

 = ∫ [
(1+𝑥𝑐𝑜𝑠𝜃)2+(1−𝑥𝑐𝑜𝑠𝜃)2

(1−𝑥2𝑐𝑜𝑠2𝜃)
] 𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
 

                                    

=∫ [
(1+𝑥𝑐𝑜𝑠𝜃)2+(1−𝑥𝑐𝑜𝑠𝜃)2

(1−𝑥2𝑐𝑜𝑠2𝜃)
] 𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
   

=∫ [
2(1+(𝑥𝑐𝑜𝑠𝜃)2)

(1−𝑥2𝑐𝑜𝑠2𝜃)
] 𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
 

=2∫ [
1

(1−𝑥2𝑐𝑜𝑠2𝜃)
+

𝑥2𝑐𝑜𝑠2𝜃

(1−𝑥2𝑐𝑜𝑠2𝜃)
] 𝜃𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
 

        =2{
𝜋

𝑥
𝑡𝑎𝑛ℎ−1𝑥 + ∑

𝜋𝑥
2

𝑛+1

2𝑛+3

∞
𝑛=0 } 

=2{
𝜋

𝑥
𝑡𝑎𝑛ℎ−1𝑥 +

𝜋

𝑥
∑

𝑥2(𝑛+1)

2(𝑛+1)+1

∞
𝑛=0 } 

=2{
𝜋

𝑥
𝑡𝑎𝑛ℎ−1𝑥 +

𝜋

𝑥
(𝑡𝑎𝑛ℎ−1𝑥 − 1)} 

      =
4𝜋

𝑥
(𝑡𝑎𝑛ℎ−1𝑥 −

1

2
) 

Theorem 1: ∫
𝜃3𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
=

−5

4𝑥
𝜋3𝑡𝑎𝑛ℎ−1𝑥 

+(
𝜋 − 𝜋2

𝑥
) 𝑡𝑎𝑛ℎ−1𝑥 

+(
𝜋

2𝑥
𝛽(
1

2
,
2𝑛 + 1

2
) ((−1)2𝑛 + 1)) 𝑡𝑎𝑛ℎ−1𝑥 

−
𝜋

2𝑥
∑ [

𝑥2𝑛+1

(𝑛 + 1)
(1 +

𝛽(
1
2
,
2𝑛 + 1
2

) ((−1)2𝑛 + 1)

2
)]

∞

𝑛=0

 

Proof:  Consider I3=∫
𝜃3𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
 

=∫
(𝜋−𝜃)3𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
      

=   𝜋3 ∫
𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
− 3𝜋2 ∫

𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
    

+3𝜋∫
𝜃2𝑠𝑖𝑛𝜃𝑑𝜃

1 − 𝑥2𝑐𝑜𝑠2𝜃
− ∫

𝜃3𝑠𝑖𝑛𝜃𝑑𝜃

1 − 𝑥2𝑐𝑜𝑠2𝜃

𝜋

0

𝜋

0

 

  By using Lemma 3, we get      

     =   𝜋3 ∫
𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
− 3𝜋2 ∫

𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝑥

𝜋

0
− 𝐼3  

+3(
𝜋−𝜋2

𝑥
+

𝜋

2𝑥
𝛽(

1

2
,
2𝑛+1

2
) ((−1)2𝑛 + 1)) 𝑡𝑎𝑛ℎ−1𝑥 

-
𝜋

2𝑥
∑ [

𝑥2𝑛+1

(𝑛+1)
(1 +

𝛽(
1

2
,
2𝑛+1

2
)((−1)2𝑛+1)

2
)]∞

𝑛=0  

=>I3= 
1

2
[𝜋3 ∫

𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
− 3𝜋2 ∫

𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝑥

𝜋

0
]  

=
−5

4𝑥
𝜋3𝑡𝑎𝑛ℎ−1𝑥   
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+(
𝜋−𝜋2

𝑥
+

𝜋

2𝑥
𝛽(

1

2
,
2𝑛+1

2
) ((−1)2𝑛 + 1))      

𝑡𝑎𝑛ℎ−1𝑥  

−
𝜋

2𝑥
∑ [

𝑥2𝑛+1

(𝑛+1)
(1 +

𝛽(
1

2
,
2𝑛+1

2
)((−1)2𝑛+1)

2
)]∞

𝑛=0                    …(1.4)                              

Lemma 4: A similar generalization is also given in [4], 

which is as follows 

∫
𝜃(𝑠𝑖𝑛𝜃)3𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
 =  ∑

𝑥2𝑛𝜋

(2𝑛+1)(2𝑛+3)
∞
𝑛=0    

= 
𝜋

𝑥2
[1 +

𝑥2−1

𝑥
𝑡𝑎𝑛ℎ−1𝑥] 

Lemma 5: [4] For integer m>0,  

∫ 𝜃𝑠𝑖𝑛2𝑗+1
𝜋

0
𝜃𝑐𝑜𝑠2𝑚𝜃𝑑𝜃= 

2𝑗𝑗! 𝜋

(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)… . . (2𝑚 + 2𝑗 + 1)
 

 

Using 7 and 8(Lemma 4 and Lemma 5), generalized R2 

solution is obtained in [4] as  

 

∫ 𝜃
𝜋

0

𝑠𝑖𝑛2𝑗+1𝜃

1 − 𝑥2𝑐𝑜𝑠2𝜃
𝑑𝜃 

=∑
2𝑗𝑗!𝜋𝑥2𝑛

(2𝑚+1)(2𝑚+3)(2𝑚+5)…..(2𝑚+2𝑗+1)
∞
𝑛=0  

 

For further generalization we consider, 

∫ 𝜃
𝜋

0

𝑠𝑖𝑛𝜃

(1 − 𝑥2𝑐𝑜𝑠2𝜃)𝑚
𝑑𝜃 

= ∫𝜃𝑠𝑖𝑛𝜃 [1 +∑
∏ (𝑚 + 𝑖)𝑛−1
𝑖=0 𝑥2𝑛(𝑐𝑜𝑠𝜃)2𝑛

(𝑛 − 1)!

∞

𝑛=0

]

𝜋

0

𝑑𝜃 

           =   ∫ 𝜃𝑠𝑖𝑛𝜃𝑑𝜃 + ∑
∏ (𝑚+𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛−1)!

∞
𝑛=0

𝜋

0
 

 ∫ 𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃
𝜋

0
 

    =    𝜋 + ∑
∏ (𝑚+𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛−1)!

∞
𝑛=0

𝜋

(2𝑛+1)
    

 

Further continuing we obtain  

∫ 𝜃
𝜋

0

𝑠𝑖𝑛2𝑗+1𝜃

(1 − 𝑥2𝑐𝑜𝑠2𝜃)𝑚
𝑑𝜃    

= ∫𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 [1 +∑
∏ (𝑚 + 𝑖)𝑛−1
𝑖=0 𝑥2𝑛(𝑐𝑜𝑠𝜃)2𝑛

(𝑛 − 1)!

∞

𝑛=0

]

𝜋

0

𝑑𝜃 

                                                                                                

= ∫ 𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 𝑑𝜃 +
𝜋

0
∫ 𝜃(𝑠𝑖𝑛𝜃)2𝑗+1
𝜋

0
 

∑
∏ (𝑚+𝑖)𝑛−1
𝑖=0 𝑥2𝑛(𝑐𝑜𝑠𝜃)2𝑛

(𝑛−1)!

∞
𝑛=0  𝑑𝜃  

=∫ 𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 𝑑𝜃 +
𝜋

0
∑

∏ (𝑚+𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛−1)!

∞
𝑛=0  

∫𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 (𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃

𝜋

0

 

= 
𝜋

2
𝛽(𝑗 + 1,1/2) + ∑

∏ (𝑚+𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛−1)!

∞
𝑛=0  

𝛽 (𝑗 + 1,   
2𝑛 + 1

2
) 

Further continuing 

∫ 𝜃
𝜋

0

𝑠𝑖𝑛2𝑗+1𝜃

(1 − 𝑥2𝑐𝑜𝑠2𝜃)𝑚/2
𝑑𝜃    

= ∫𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 [1

𝜋

0

+∑
∏ (𝑚 + 2 ∗ 𝑖)𝑛−1
𝑖=0 𝑥2𝑛(𝑐𝑜𝑠𝜃)2𝑛

(𝑛)! ∗ 2𝑛

∞

𝑛=0

] 𝑑𝜃 

=  ∫ 𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 𝑑𝜃 +
𝜋

0
∑

∏ (𝑚+2∗𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛)!∗2𝑛
∞
𝑛=0  

∫𝜃(𝑠𝑖𝑛𝜃)2𝑗+1 (𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃

𝜋

0

 

= 
𝜋

2
𝛽(𝑗 + 1,1/2) + ∑

∏ (𝑚+2∗𝑖)𝑛−1
𝑖=0 𝑥2𝑛

(𝑛)!∗2𝑛
∞
𝑛=0 𝛽 

Now another result we may consider, 

  I(x) = ∫
𝜃𝑠𝑖𝑛𝜃𝑑𝜃

1−𝑥2𝑐𝑜𝑠2𝜃

𝜋

0
                                                       …(1.6) 

Differentiate w.r.t x  then   

             I/(x) = ∫
𝜃𝑠𝑖𝑛𝜃(2𝑥𝑐𝑜𝑠2𝜃)𝑑𝜃

(1−𝑥2𝑐𝑜𝑠2𝜃)2

𝜋

0
                                               

      = 
−2

𝑥
∫

(𝜃𝑠𝑖𝑛𝜃(1−𝑥2𝑐𝑜𝑠2𝜃)−𝜃𝑠𝑖𝑛𝜃)𝑑𝜃

(1−𝑥2𝑐𝑜𝑠2𝜃)2

𝜋

0
 

= 
2

𝑥
∫

𝜃𝑠𝑖𝑛𝜃𝑑𝜃

(1−𝑥2𝑐𝑜𝑠2𝜃)2

𝜋

0
−

2

𝑥
𝐼(𝑥) 

 Hence, 
𝑑𝐼(𝑥)

𝑑𝑥
+

2

𝑥
 I(x) =

−2

𝑥
∫

𝜃𝑠𝑖𝑛𝜃𝑑𝜃

(1−𝑥2𝑐𝑜𝑠2𝜃)2

𝜋

0
   

         =
−2

𝑥
∫ 𝜃𝑠𝑖𝑛𝜃 ∑ (𝑛 + 1)(𝑐𝑜𝑠𝜃)2𝑛(𝑥)2𝑛∞

𝑛=0 𝑑𝜃
𝜋

0
 

  So    
𝑑𝐼(𝑥)

𝑑𝑥
+

2

𝑥
 I(x)  

    =
−2

𝑥2
∑ (𝑛 + 1)(𝑥)2𝑛+1∞
𝑛=0  

∫𝜃𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃)2𝑛𝑑𝜃

𝜋

0

 

 =
−2

𝑥2
∑ (𝑛 + 1)(𝑥)2𝑛+1

𝜋

2𝑛+1

∞
𝑛=0  

 =
−2𝜋

𝑥2
∑

(𝑛+1)(𝑥)2𝑛+1

2𝑛+1

∞
𝑛=0  

= -
−2𝜋

𝑥2
∑ (𝑥)2𝑛+1

(𝑛+1)

2𝑛+1

∞
𝑛=0  

 

= 
−2𝜋

𝑥2
∑ (𝑥)2𝑛+1 [1 +

1

2𝑛+1
]∞

𝑛=0  
 

= 
−2𝜋

𝑥2
∑ [(𝑥)2𝑛+1 +

(𝑥)2𝑛+1

2𝑛+1
]∞

𝑛=0  
 

=
−2𝜋

𝑥2
[∑ (𝑥)2𝑛+1∞

𝑛=0 + ∑
(𝑥)2𝑛+1

2𝑛+1

∞
𝑛=0 ] 

 

=[
−2𝜋

𝑥
∑ (𝑥)2𝑛∞
𝑛=0 +

−2𝜋

𝑥2
∑

(𝑥)2𝑛+1

2𝑛+1

∞
𝑛=0 ] 

 

=
−2𝜋

𝑥(1−𝑥2)
−

2𝜋

𝑥2
𝑡𝑎𝑛ℎ−1𝑥     by lemma1. 

Hence, 

  
𝑑𝐼(𝑥)

𝑑𝑥
+

2

𝑥
I(x)= 

−2𝜋

𝑥(1−𝑥2)
−

2𝜋

𝑥2
𝑡𝑎𝑛ℎ−1(x)                        …(1.7)   

                                      

   Solving the above First order ordinary linear differential 

equation (1.7) using, Maxima software, we get the integrating 

factor as x2, and the solution is  
 

𝑥2𝐼(𝑥) = −2𝜋∫𝑥2 (
1

𝑥(1 − 𝑥2)
−
𝑡𝑎𝑛ℎ−1𝑥

𝑥2
)𝑑𝑥 

   𝐼(𝑥) =
2𝜋

𝑥2
(𝑙𝑜𝑔(1 − 𝑥2) − 𝑥𝑡𝑎𝑛ℎ−1𝑥) 
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II. CONCLUSION  

The above results of integration are still in the initial stage, 

but give rise to several types’ integral forms, and needs more 

focus of verification. It also opens multiple, distinct types of 

food for researchers. 
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