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Abstract: In this article the elementary mathematical 

methods are used to prove Beal’s Conjecture, Fermat’s 

Conjecture, Collatz Conjecture and Goldbach Conjecture.  
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I. INTRODUCTION 

The French mathematician Pierre de Fermat (1607-1665), 

conjectured that the equation  xn +yn = zn has no solution in 

positive integers x, y and z if  n is a positive integer ≥ 3[1]. 

The American Banker and amateur mathematician Mr. 

Daniel Andrew Beal formulated the Beal’s conjecture in1993 

[2] as a generalization of Fermat’s Conjecture. Lothar Collatz 

introduced Collatz Conjecture in 1937[3,5]. It is also known 

as the 3n +1 problem . In 1742, the Russian mathematician 

Christian Goldbach introduced Goldbach Conjecture [4]. 

British Mathematician Andrew Wiles proved Fermat’s 

Conjecture indirectly as a special case of modularity  theorem 

for elliptic curves in 1995 [1] and so Fermat’s Conjecture is 

also known as Fermat’s Last Theorem. In this article these 

conjectures are proved directly using mathematical methods. 

II.  PRELIMINARIES 

Statement 2.1: If Ax +By =Cz where A,B,C,x,y and z are 

positive integers and x,y,z are greater than 2, then A,B and C 

must have a common prime factor. 

Equivalently,  the equation Ax +By =Cz has no solutions in 

nonzero integers and pairwise coprime integers A,B,C if  

x,y,z ≥ 3. 

 Statement 2.2: No three positive integers a, b, and c satisfy 

the equation aα + bα = cα for any integer value of α greater 

than 2. 

Definition  2.1. Hailstone sequence  

Hailstone sequence corresponding to a positive integer n  is a 

sequence {ai}, i = 0,1,2, .., where ai is obtained as the value 

applied to n recursively i times ai = f i(n)  

and i= 0,1,2,.. where f0(n) = n and for i > 0, 
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fi(n)  

 

Statement 2.3: For any positive integer N, the Hailstone 

sequence starting with n eventually ends in 1. 

Definition 2.2. Prime gap 

A prime gap is the difference between two successive prime 

numbers. The n-th prime gap, denoted gn or g(pn) is the 

difference between the (n + 1)-th and the n-th prime numbers 

 

i.e,  , , , 

,   and 

 

 

Definition 2.3. Prime gap interval 

The ith prime gap interval  is the set of positive integers y 

such that  nth prime number  ≤ y ≤ (n + 1)th prime number. 

Examples: 1st prime gap interval is{2,3}, the 2nd  prime gap 

interval is { 3,4,5}. 

Statement 2.4.1: Every even number greater than 2 is sum of 

two prime numbers. 

Statement 2.4.2: Every odd number greater than 7 is a sum of 

three odd prime numbers. 

Statement 2.4.3: Every odd number greater than 7 is a sum of 

one prime number and an even number. 

III. PROOF OF BEAL’S CONJECTURE 

Basic results  and notations that are used in the proof 

1. If Ax is even then A is even. 

2. If Ax is odd then A is odd. 

3.Suppose Ax +By = Cz  where A,B,C,x,y and z are positive 

integers, then  either all the three numbers Ax ,By , Cz  must be  

even or any two of the  numbers Ax ,By , Cz  must be odd. 

4. If all the three numbers Ax ,By , Cz  are positive even,then 

the numbers A,B and C are even and they have a common 

prime factor 2. 

5. Set of natural numbers is denoted by N. N = {1,2,3,..} 

6. Set of  Whole  numbers is denoted by W. W={0,1,2,3,..} 

7. A positive even number can be written as 2u (2k+1)v where 

k is  non negative integer   u,v  N                                                       

8. A positive odd number can be written as a product of 

(2li+1) where  li  W and  i  N.   In  this representation the 

powers of same number is represented as having same 

numerical value to li  but i takes  distinct numbers.                                            

Example  27= 33. 
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27 = (2x1+1) (2x1+1)(2x1+1), Here l1 = l2= l3=1. 

To prove Beal’s Conjecture, it is enough to prove that if          

Ax +By = Cz  such that any two of the numbers Ax ,By , Cz  is 

odd, then  there exists a common prime factor.  

 

Statement 2.1: If Ax +By =Cz where A,B,C,x,y and z are 

positive integers and x,y,z are greater than 2, then A,B and C 

must have a common prime factor. 

Proof. Suppose Ax +By = Cz  where A,B,C,x,y and z are 

positive integers and x,y,z are greater than 2 then to prove 

that A,B and C must have a common prime factor.  

Without loss of generality, suppose  Ax is even and By  

,Cz  are odd, to prove Beal’s conjecture, it is enough to prove 

following lemma. 

 

Lemma 3.1:    If  

   
then  (2li+1) = (2mj+1)  divides (2k+1)xv for some i and  j 

where x, y, z > 2 ,  li , mj , k   W  and  i,j, m,n, u,v   N   

 

Proof. Let + 

→ (3.1). 

Then 2xu (2k+1)xv  =  

→ (3.2). 

Consider two integers  p , q such that 

 and 

q in the  equation (3.2).  

 

Case 3.1.1. p = q = 0 for all p, q.  

This case is a contradiction to equation (3.2).In  the RHS of 

equation (3.2),    (2p+1) = (2q+1) =1   RHS = 0 but  

LHS ≠ 0.  

 

Case 3.1.2. There exists atleast one  pair (p,q ) such that 
 p = q ≠ 0.  

In this case in RHS of equation (3.2),    (2p+1) = (2q+1) is a 

common factor. Since (2k+1)xv  is the only  odd factor in LHS 

of equation  (3.2),      (2p+1) = (2q+1) must divide(2k+1)xv  .  

 

Case 3.1.3. p , q > 0 and  p ≠ q for all p, q. Suppose 

for all i, j where  and  

 in equation (3.2).Then 

 and    are odd 

relatively prime numbers. 

 

Case 3.1.3.1.When  k = 0. Let B =  and               

C =  

 

It is trivial that if   2x = Cz - By where B,C >1  and  x, y, z> 2  

are positive integers such that g.c.d (B,C) =1  , then the terms        

Cz  and  By are of the form   Cz =(r+1)2x +t  and    

 By = r 2x + t  where    t =1,2,3,..,2x – 1 and r   W.             
                                            

Suppose  is even, then Cz and By cannot be odd. Which is a 

contradiction to assumption. So it is enough to prove 

following lemma. 

Lemma 3.2.There  does not exist  two odd numbers B ,C >1  

such that By  = r 2x + t    and  Cz =( r+1) 2x + t   where x,y,z > 2, 

t = 1,3,5,…..,2x -1 and r ∈ W.                

Suppose  r 2x + t = By  , B >1 is an odd  number where r   N,   

t = 1,3,5,….. ,2x -1  , and  x,y >2 . Since   Cz  = ( r+1) 2x + t  

 = By+ 2x,   and  gcd (B,C) =1, The possible  values for Cz  are 

3y, 5y,…, (B+2)y where y ≥ 3. 

We shall prove that,  If  By is an odd number then  

Cz  3y, 5y,…, (B+2)y } for all y ≥ 3. using Principle of 

Mathematical  Induction. 

 

Step 1:For n = 1, x = 4, By=33 = 27 =16 +11,  

Here B =3, y=3 and t =11. 

The choices for Cz are the set of numbers 

{33,35,37,39,41,43,45,47}. There are  8 odd numbers. Note 

that 53 =125 > 47 and 34 =81 > 47.It is clear that there does not 

exist an odd number  C  N  such that for  z >2,                                

Cz  {33,35,37,39,41,43,45,47}.Therefore  there does not 

exist an odd number C  N  such that 

 Cz  = ( r+1) 2x + t  = By+ 2x = (B+2)y, for y = 3,4. 

 

Step 2: Assume the result is true for  y = p. 

i.e, There does not exist an odd number C   N   such that  

Cz= (B+2)p . 

Now consider (B+2)p+1 = (B+2)p (B+2)  

If there exist an odd number C  N    such that  

Cz   =(B+2)p+1 = (B+2)p (B+2)  then (B+2)p   is a factor of Cz. 

Therefore (B+2)p = Cs where s < z . Which is a contradiction 

to assumption that there does not exist an odd number C   

N   such that Cz= (B+2)p since s < p. Hence the result is true 

for all  y ≥ 3.In a similar way it can be proved the statement is 

true for all v, k, x, y, z   N, r   W where   x,y,z> 2. 

Therefore                    Cz  3y, 5y,…, (B+2)y } for all y ≥ 

3.Therefore there  does not exist  two odd numbers B ,C >1  

such that By  = r 2x + t      and Cz =( r+1) 2x + t   where x,y,z > 2, 

t = 1,3,5,…..,2x -1 and r ∈ W. Lemma 3.2  is a contradiction to 

equation (3.2). 

 

Case 3.1.3.2. When k > 0 . Let B =  and         

C = .It is trivial that if (2k+1)xv 2x = Cz - 

By where B,C >1  and  x, y, z> 2  are positive integers such 

that g.c.d (B,C) =1  , then the terms   Cz  and  By are of the 

form    Cz = (r+1) (2k+1)xv 2x + t and By = r (2k+1)xv 2x + t 

where          t =1,2,3,.., 2x (2k+1)xv-1 and v   N , r    W.  

Suppose t is even, then Cz and By cannot be odd.  

Which is a contradiction to assumption. 

So it is enough to prove following lemma. 
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Lemma 3.3. There  does not exist  two odd numbers B ,C >1  

such that  

By = r (2k+1)xv 2x + t and                              

 Cz = (r+1) (2k+1)xv 2x + t  

where x,y,z > 2,  

t = 1,3,5,….. 2x (2k+1)xv-1                                                                           

and v,k   N , r    W.   

Suppose  r (2k+1)xv 2x + t  = By ,where B >1 is an odd 

number, y >2 , t = 1,3,5,….. 2x (2k+1)xv-1 and v, k   N , r  

  W.   

Since Cz = (r+1) (2k+1)xv 2x + t , and  gcd (B,C) =1, The 

possible  values for Cz  are 3y, 5y,…, (B+2)y where    y ≥ 3.We 

shall prove that If  By is an odd number then Cz 3y, 5y,…, 

(B+2)y } for all  y ≥ 3 using Principle of Mathematical  

Induction. 

 

Step 1: For n = k = v =1, x=3  , 216 = 2333 .  

By  {217=216+1,219=216+3,221=216+5,…, 243=216+27, 

….., 431=216+215}. Among these numbers 243 = 35,  

therefore B = 3, t = 27 and y = 5 .The choices for Cz are  

513,515,517,…,625, …,647. But  243= 216+ 27 and 512 

+27= 539.  There does not exist any odd number  C such that 

Cz =539. Here 625 = 54.But  243= 216+ 27 and 625 ≠ 539 . 

Note that 53 =125 35 and 54= 625 35.There fore , there 

does not exist an odd number C   N such that  

Cz   =(B+2)y for y = 3,4. 

 

Step 2: Assume the result is true for  y = p. 

i.e, There does not exist an odd number C   N such that  

Cz= (B+2)p .Now consider (B+2)p+1  = (B+2)p (B+2) .If there 

exist an odd number C   N such that  

Cz   =(B+2)p (B+2) , then (B+2)p  is a factor of Cz.Therefore 

(B+2)p = Cs where s < z . Which is a contradiction to 

assumption that there does not exist an odd number C   N  

such that    Cz   = (B+2)p  . 

 

Hence the result is true for all   y ≥ 3.In a similar way it can be 

proved the statement is true for all v ,k ,x ,y ,z   N  ,r   W 

where x,y,z > 2.  Therefore  Cz 3y, 5y,…, (B+2)y } for all   

y ≥ 3. There fore there  does not exist  two odd numbers            

B,C >1  such that By = r (2k+1)xv 2x + t   and  

Cz = (r+1) (2k+1)xv 2x + t where x,y,z > 2,  

t = 1,3,5,….. 2x (2k+1)xv-1 and v,k   N , r    W.   

Lemma 3.3  is a contradiction to equation (3.2).                                                              

Therefore , If  

  
 

then (2li+1)=(2mj+1)  divides (2k+1)xv for some i and  j where 

x, y, z > 2 ,  li , mj , k   W  and  i,j, m,n, u,v   N   

 

In a similar way the lemma 3.1 can be proved for the equation 

 
  

Hence the proof of Beal’s Conjecture. 

IV. PROOF OF FERMAT’S CONJECTURE  

Statement 2.2: No three positive  a, b, and c satisfy the 

equation aα + bα = cα for any integer value of α greater than 2. 

Proof. Beal’s theorem implies that  for any integers a,band c 

if aα + bα = cα  then a,b and c must have a common prime 

factor. So cancelling the αth power of common prime factor 

from both sides of the equation, without loss of generality 

suppose  aα , bα   and cα  are pairwise relatively prime 

numbers  such that aα  is even bα  and cα are odd. To prove 

Fermat’s Conjecture, it is enough to prove that for any integer 

value of α > 2,  i,j,m n,u,v,w   N , li , mj , k   W  the 

following two equations cannot hold. 

 

 
 

Case 3.1.3.1 and case 3.1.3.2   restricting to x = y = z = α 

gives the proof for  k ≥ 0. 

This proves the famous Fermat’s Conjecture. 

V. PROOF OF COLLATZ CONJECTURE 

Statement 2.3: For any positive integer N, the 

Hailstone sequence starting with n eventually ends in 1. 

It is enough to prove that for all Hailstone sequences starting 

with any natural number n, there exists a natural number i 

such that there exists a term in the sequence ai= f i (n) = 1.  

Theorem 5.1 . N,  ,where An is the set that 

consists the numbers in Hailstone sequence starting with n.  

Theorem 5.2. N 

Corollary5.3. A2 A0={1} N 

 

Proof of Theorem 5.1. The set An consists the numbers ai 

where ai is obtained as the value applied to n recursively              

i  times ai = f i(n) N. 

As per definition, f0(n) = n and for i > 0                                                  

f i(n)  

It is clear that for every N , f i(n)is a natural number and 

so ai exists. Hence  exists N.                      

Remark 2: The above proof never implies that An must 

contain 1 or An must be finite. The proof conveys that An 

exists and the elements in An , N are positive integers. 

Theorem  5.2 . N 

To prove theorem 5.2, first we shall prove the following 

lemmas 
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Lemma 5.2.1: For any positive odd number 

  1,  (3 1)    (3 1)  p the number p is even and p p + +  . 

Proof. Trivial. 

 

Lemma 5.2.2: For any positive odd number 

( ) ( )
 

2 2

3 1 3 1
  1,             

p p
p If is odd then p

+ +
 

 
Proof.  Trivial 

                           
  

Lemma 5.2.3: For any positive odd number  

( ) ( )3 1 3 1
  1,                 1

2 2i i

p p
p If is odd then p wherei

+ +
    

Proof. 

( )
( )

( )
( )

( )
( )

3 1
   ,   2 1,  where  ,     3 2

2

      1. 5   2    .

. ,  (1.5  1)  (2 1),   

3 2
 . ,    2 1  ,    

2

3 2
. ,     2 1 ,     ,   

2

. ,

i

p
Since p is odd p k k N and k

It is obvious that k k for all k N

i e k k where k N

k
i e k where k N

k
i e k where i k N

i e

p

+
= +  = +

 

+  + 

+
 + 

+
= + 

( )
( )

( ) ( )

1

1

3 2
    2 1 ,    1 ,   

2

3 1 3 2
. ,     ,    1 ,   

2 2

i

i i

k
k where i k N

p k
i e where i k N

p

p

−

−

+


+

=+  

+
=   

 

( ) ( )

( ) ( )

3 1 3 1
.  ,    or even         1

2 2

3 1 3 1
 ,            1

2 2

i i

i i

p p
i e If is odd then p where i

p p
Hence If is odd then p where i

+ +
 

+ +
 

 

Remark: 1. The Lemma 5.2.3 also holds if     is even .  

Remark: 2.  When  p =1 , (3p+1) /(22) = 1 = p  

 

Corollary 5.1: From the above proofs and the definitions of 

fi(n) and An, we shall observe the following inequalities and  

sub set relations. 

If  p > 1 is an odd number 

5.2.3.1  A3p+1 C Ap               

5.2.3.2

( ) ( )
( ) 3 13 1

2

( )

3 1 3 1
                 

2 2
p pp

p p
If is odd then p and A A A++

+
 

+


 

5.2.3.3       

( ) ( )3 1 3 1
             1  

2 2i i

p p
If is odd then p where i and

+ +
   

( ) ( ) ( )
1

3 13 1 3 1 3 1

2 2 2

.  ...
i i

p pp p p
A A A A A

−

++ + +
  

 
 

Let  1p   be any odd numbers in N, then the relations 

5.2.3.2 and 5.2.3.3 imply that there exist some odd number q  

holding any of the following inequalities. 

( )
( )

( )
( )

( )
( )

( )

3 1
                

2

3 1
                q

2

3 1
              

2

3 1
( )              

2

 

i

i

p
i q p

q
ii p

p
iii q p

q
iv p q

+
= 

+
= 

+
= 

+
= 

 

Corollary 5.2: 

Let p  be any positive odd number .Then atleast any one of  

the following cases will hold. 

Case 1:There exist some odd number  q such that Ap Aq . 

Case 2:There exist some odd number q such that Aq Ap . 

Case 3:There exists an even number k such that Ak  Ap. 

Define a relation R on the set {An}, where n N such that 

Ap R Aq iff     . Now R defines a partial order 

relation since it is reflexive, anti symmetric and transitive. 

Now({An}, R ) is a partially ordered set.  

Lemma 5.2.3.1: The minimum element in a partially ordered 

set is  unique. 

Proof: Suppose there are two minimum elements Ap and Aq.  

Since Ap is minimum .Since  Aq is also  

minimum . Hence  Ap = Aq. That means the  

minimum element is unique. 

Lemma 5.2.3.2: A5  is unique  minimum element in partially 

ordered set  ({An}, R) for a set of odd numbers (say P). 

Proof: From the relation  R ,definition of An , lemmas 5.2.2 

to 5.2.3.1 ,corollary 1 and corollary 2 we get 

Observation 1: By corollary 1, when  p=3, we get A5 R A3. 

Observation 2: The relation  R ,definition of An , lemmas 5. 

2.2 to 5.2.3.1 , corollary 1 and corollary 2, when applied to 

odd numbers, we  get A5R A13 R A17 R A11 R A7 R A9 R ….. 

Observations 1 , observation 2  and lemma 5.2.3.1 implies 

that A5 is the unique minimum element in partially ordered 

set    ({An}, R) for a set of odd numbers .Let P be that set of 

odd numbers in N for which  A5  is unique  minimum element. 
 

Then  A5  →Equation  (5.1). 
 

Let Q be the set of odd numbers in the set  N – P.i.e, Q ={ x/ x 

is an odd number in  N-P} 

Lemma 5.2.4: If m is a positive even number then it is a term 

of either the sequence{ 2u} or the sequence{( 2k+1)v 2u} 

where u,v,k . 

Proof. The first sequence { 2u} contains all even  numbers            

that can be written as  2u . Suppose m is an even number such 

that m  2u.Then m = 2s where s> 1 and s is a natural 

number.  If  s is odd, then m is a term of the second 

sequence{( 2k+1)v2u}.  

 

 

 

 

( ) ( )

   ,   2 1,  where ,  

  (3 1)  3 2 1 1  6  4  2 3 2

Since p is odd p k k N

p p k k k

= + 

 + = + + = + = +
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If  s is even, s can be written as product of  powers of prime 

numbers . Since all prime numbers except 2 are odd, one 

factor of s is of the form ( 2k+1) , k . Hence  m =2s is a 

term of the second sequence  {( 2k+1)v 2u}. Hence If m is an 

even number then it is a term of either the sequence { 2u} or 

the sequence  {( 2k+1)v 2u} where u,v, k . 

Let S ={x/ x { 2u} or  x {( 2k+1)v 2u }} .  Now N = SUQUP. 

The sets P and SUQ  is a partition for N. 

Lemma 5.2.4.1: A2  is unique  minimum element in partially 

ordered set  ({An}, R)) where n . 

Proof : The definition of An and relation R  implies that A2  is 

included in all An where n = 2u, u  }.Also   

A( 2k+1)
v  R  A( 2k+1)

v
 2

u where u,v, k .If ( 2k+1)v , 

then by lemma 5. 2.3.2, A5R A( 2k+1)
v  and by lemma 5.2.3 ,       

A2 R A5  Hence A2 RA( 2k+1)
v
 2

u  . Suppose ( 2k+1)v . 

By  lemma 5.2.3, A4  A1, and A2  A1. For all odd  

where p >1, by corollary 5.1 and corollary 5.2, there exists an 

odd  q such that either AqRApor Ap R Aq. If  q A2 R 

A5RAq  .Hence Ap includesA2 .If q  without loss of 

generality suppose Ar,r  be the set such that Ar  = Aqi  

for a set of qi I = 1,2,3,….  . Now3r +1 is even 

and  except 1 there is no  qi  such that AqiRA3r+1 . Hence 

by corollary 5.1, Subset relation 5.2.3.3 we get  

3r+1 = 2u, u  }.For all odd numbers in q in Q , 

the number 3q+1 is even and belongs to S. This implies that 

A2 is the unique minimum element in partially ordered set 

({An}, R) where n . 

Hence  A2  →Equation  (5.2) 

From equations (5.1) and (5.2), 

A5 A2 = A2. 

Hence . 

Corollary 5.3. A2 A0 . 

Proof.   A5 A2 = 

A2 A0. 

This shows that the set A0 is subset of all  , . Which 

implies that the element 1 belongs to all Hailstone sequences. 

Therefore, for all Hailstone sequences staring with n 

, there exists a number i  n N such that  ai= fi(n) . 

In other words all the  Hailstone sequences staring with n 

 , contains the term 1. This proves the  famous 

Collatz Conjecture. 

VI. PROOF OF GOLDBACH CONJECTURE 

Statement 2.4.1: Every even number greater than 2 is sum of 

two prime numbers. 

Proof.  Let n> 1 be a positive integer. Let En={e / e is an even 

number ≤ n} .Let  

Pn = {p1 =2,p2,p3,…,ps} be the set of all prime numbers  ≤ n .It 

is enough to prove that every even number e En where e ≠ 2 

can be written as pi+ pj where i , j = 1,2,3,…s.    

Define   

Mn  {ei,j / ei,j = where 

i ,j =1,…,s. }  

To prove that En  Mn {2} for all n N {1}. 

Let   ei,j En where ei,j ≠ 2 .To prove that ei,j Mn , it is 

enough to prove the following lemmas. 

Lemma 6.1:  Corresponding to each positive integer  x ≤ 

(n/2) there exists pi ,pj Pn.such that  2( x +1) =pi +pj 

Proof. Since every prime number except 2 are odd numbers 

,pi= 2l +1and pj = 2m +1for some positive integers l , m . 

There fore pi +pj = 2l +1   +2m +1  =  2( l+ m +1) =2(x+1) 

where x = l+m . 

Now we shall   prove that for all even numbers 

 4  ≤  2( x +1) ≤ n, there exists pi , pj   P  where                            

l=( pi -1)/2  ,  m =( pj -1)/2    and x = l+m  ≤ (n/2) 

Let  be the ith prime gap and  let  ,  ,….,  , be 

the positive integers in ascending  order in the  ith prime gap 

interval where    and  ≤  

For each  N  and corresponding prime gap  , define 

the two neighbourhood set and  , such that 

,  ,…., }  Pn where ,  

,….,  are  number of consecutive prime 

numbers and  ,  ,…., }  Pn  

where  are  number of 

consecutive prime numbers 

It is obvious that there are  distinct positive 

integers in [  where  Pn .Selecting  

 number of consecutive prime numbers greater 

than or equal to ,it is possible to get  

distinct 

positive integers  ,where     

 such that 

Pn .Among these distinct positive 

integers number of positive integers  must  be 

such that  

(  -1) ≤   ≤ (  ) 

since  

 

Similarly, selecting  number of                             

consecutive prime numbers less than or equal to , 

it is possible to get  
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distinct 

positive integers  ≤ ,where     

 such that Pn .  

Among these distinct positive integers  number 

of positive integers must  be such that  

( )  ≤    ≤   (  ) 

since   

since   

 . 

Let    

Now, It is obvious that   ≤ .Suppose            

µ < be a positive integer in the αth prime gap interval 

such that  .  

Note that   for some positive integers  

 1,2,3,…,    }.  

 

Lemma 6.2: If  µ <  is an integer  in the αth prime 

gap interval  then  there must exist two positive integers 

such that   and  

where a1,b1,c1,d1 are of the form  

Proof. Suppose there does not exist  and 

   

where a1,b1,c1,d1 are of the form Then    

µ, .  Since  are positive integers in the 

(α-j)th  prime gap interval  , where  j= 0,1,2,3,..α-1  ,there must 

exist  1,2,3,…,    }  and  

 such that  and  

where a2,b2,c2,d2 are of the form  

Suppose there does not exist  and 

 , then µ, . Continuing 

this argument, we get a set of    numbers that doest not 

belong to A . Since ≤ ., the argument 

leads to a contradiction. Therefore by method  of infinite 

descent, there must exist two positive integers  

 and   where 

 

This implies that , 

Therefore , corresponding to each positive 

integer  x ≤ there exists pi ,pj Pn such that  2( x +1) =          

pi +pj . Now ei,j En where ei,j ≠ 2 and i≠j ,  implies that ei,j is 

an even number. i.e, ei,j= 2k  where k is any positive integer 

such that k  ≤ . 

Applying lemma 6.1, there exists pi ,pj Pn such that                       

2k  =pi +pj . 

Now  

 

Therefore ei,j Mn 

Therefore En  Mn {2} for all n  N–{1} . 

 

Statement 2.4.2: Every odd number greater than 7 is a sum of 

three odd prime numbers. 

Proof . The unit digit of every even   number can be any of 

the number in {0,2,4,6,8}. If the prime numbers 3,5,7 or 11 is 

added to every even number then the digit in the unit place of 

sum will be 1,3,5,7 or  9.Therefore every odd number can be 

obtained by adding 3,5,7or 11 with an  even number. The 

statement 1 implies that every even number greater than 2 is 

sum of two prime numbers. Therefore every odd number 

greater than 7 is a sum of three odd prime numbers. 

Statement 2.4.3: Every odd number greater than 7 is a sum 

of one prime number  and an even number. 

Proof. The statement 2.4.2 implies that every odd number 

greater than 7 is a sum of three odd prime numbers. It is 

obvious that sum of two odd numbers is always even. 

Therefore considering the sum of two odd primes as an even 

number  statement 2.4.2  implies statement 2.4.3. 

 

Illustrative Example: 

When  n = 24.    

E24  = { 2,4,6,8,10,12,14,16,18,20,22,24}  

P24 = {p1 =2,p2=3,p3=5,p4=7,p5= 11, p6=13, p7=17, p8=19, 

p9=ps =23 } 

M24={4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34, 36, 38, 

40, 42,46}. 

, , ,

, , , 

,  

Consider . The corresponding prime gap 

interval is{ 3,4,5}.  

i.e,  = 3, = 4, =  5.  

Selecting  prime numbers ≥ 3, we can form 

 . 

Selecting  prime numbers ≤ 3, we can form 
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There are 2 elements in ,therefore  distinct 

positive integers 2 ≤  ≤   can be formed 

such that      where     .  

Note that  ,   ,   

The corresponding even numbers in En are 2(2+1) = 6, 

 2(3+1) = 8 and 2(4+1) =10 

Now consider . The corresponding prime 

gap interval is{ 5,6,7}.  

Selecting  prime numbers ≥ 5, we can form 

 . 

Selecting  prime numbers ≤ 5, we can form 

 

There are 2 elements in  ,therefore  distinct 

positive integers (5 -1)= 4  ≤  ≤ 6= (7-1) can be formed such 

that      where     .  

Note that ,   and 

 .  The corresponding even numbers in En are 

2(4+1) = 10,  2(5+1) = 12 and  2(6+1) =14. 

Now consider . The corresponding prime 

gap interval is{ 7,8,9,10,11}.  

Selecting  prime numbers ≥ 7, we can form 

 . 

Selecting  prime numbers ≤ 7, we can form 

.There are 4 elements in  ,  therefore  

distinct positive integers (7-1) = 6  ≤  ≤ 16= (17-1) can be 

formed such that      where     

. Among these, it is enough to get the 

numbers between                    6  ≤   ≤ 10 = ( ) 

Note that  ,   , 

,   .     

Note that there exists positive integers  = 2 and =5 such 

that 2 + 5 = 7  

Let A = {3,4,5,6,8,9,10} . In this set  = 6 = 2 + 4  and                 

   = 8 = 5 + 3 where      and     . 

Therefore     .The corresponding even 

numbers in En are 2(6+1) = 14,  2(7+1) = 16 , 

2(8+1) =18, 2(9+1)=20 and 2(10+1)=22.  

Consider  .    = {11,13}. 

 , , . 

The corresponding even numbers in En are 2(10+1) = 22, 

2(11+1) = 24. Therefore E24  M24 {2}. 

Hence the proof of famous Goldbach conjecture. 

VII. CONCLUSION 

In this article the famous unproven conjectures in Number 

theory Beal’s, Collatz and Goldbach’s are proved using 

elementary methods. Fermat’s conjecture is already proved 

by Andrew Wiles in indirect method. Since Beal’s 

Conjecture is generalization of Fermat’s Conjecture, the 

proof of Fermat’s Conjecture that is discussed in this article 

as deduction from the proof of Beal’s is the direct proof. 

Fermat’s equation has solutions in non integers. Interpreting 

those solutions as measures of acceptance and rejections of 

an alternative in a network in comparison with other 

alternatives, study on Fermat’s Fuzzy Graphs and its 

applications in decision problems is under progress. The 

model and applications of Beal’s Fuzzy Graphs, Applications 

of Collatz and Goldbach’s theorems are also under 

investigation. 
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