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On the Integer Solution of the Transcendental

Equationv2z — 4 = \/x +vVCy+ |x—+Cy
)
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Abstract: Let C be a positive non-square integer. In this paper,
we look at the complete solutions of the Transcendental equation

V2z—4= |x+VCy+ [x—+/Cy , where x2 — Cy? = a? or
y y y

22t |n addition, we find repeated relationshipsin the solutions to
thisfigure.
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l. INTRODUCTION

The Transcendental equation plays an important role

in solving various Science and Engineering problems. Here
is a Transcendental equation, which can be solved by
standard calculation methods. As such, this paper offers a
novel view of solving Transcendental equations using the
concept of Pell equations. Let C # 1 be a positive non-
square integer and N be any fixed positive integer. After that
the figure

x?2 —Cy? = +N (D

is known as the Pell equation and is named after John Pell
(1611-1685), a mathematical who sought complete solutions
to such calculations in the seventeenth century. In N=1, the
Pell equation

x2—Cy? =41 2

is known as the classical Pell equation and was first studied
by Brahmagupta (598-670) and Bhaskara (1114-1185), see
[1]. Pell equation x? — Cy? = 1 was solved by Lagrange
according to simple continued fractions. Lagrange was the
first to prove that x? — Cy? = 1 has innumerable solutions
inintegersif C # 1 is a whole number that is not a square.
The first minimal solution for the whole number(x,, y,) of
this calculation is called the basic solution because all other
solutions can be found in it. If (x;,y,) is the basic solution
of x2—Cy?=1, then a good n-thsolution(x,,y,) is
defined
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Chack far
updatas

Xn + yn\/f = (X1 + yl\/f)n (3)

Allow [ao; ay,ay, ..., a,,2a,] became a simple continued
fraction of VC, where a, = [VC|. Allow py = @y, p; = 1 +
agay, 9o = 1, q; = a,. Usualy,

Pn = AnPn-1 + pn—ZandQn = anqn-1 + qn-2 (4)

for n > 2. Then the basic solution of x2 — Cy? = 1is

®r qr) if risodd
Xy, = S
(1, 71) {(p2r+1x‘hr+1) if ris even

©)

On the other hand, in the case of (1) and (2), it is known that
if (fi,91) ad (x,_1,y,-,) are complete solution of x2 —

Cy?=4N and x?>-Cy?=1, respectively, then
(f gn)and isthe solution of x2 — Cy? = +N, where
fn + gn\/E = (xn—l + yn—l\/f)(fl + gl\/E) (6)

forn = 2.

. MATERIALSAND METHODS

In this function, we look at the transcendental equation

v22—4=\/x+\/fyi x —Cy.

Separating both sides and simplifying, we have

Zz=x+2+x2—Cy? (7)

Take x2 — Cy? = a?, so that z = x + 2 + a. After that we
can give the following theorem.
Theorem: 1

Let (x;,v;)to be the basic solutions for Pell equation x? —
Cy? = a? and allow

fn ) (xl C)ﬁ) 1
= 8
(gn Y1 X (0) @
for n>2. Then the complete solutions of the

transcendental equation z = x + 2 +,/x2 — Cy?, (x%-—
Cy? = a?) are (x,, ¥, z,,), Where

fTL n fTL
(xn’ yn'zn) = (F’%'F + (2 t a)) (9)

Proof. We validate the theorem using mathematical input
method. In n =1, we come from (8), (fi,91) = (x1,¥1)
which is the basic solution forx? — Cy? = a?. Now we
assume that the pell equation x? — Cy? = a? satisfied
with(x,_1, Vn—1). That is,
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2 2
2 2 _ fi-1—9n-1
Xn-1— Cyn—l - g2n—4

=a? (10)
and indicates that it contains(x,, ¥,,).

Indeed in (8), it is easily proved that,

fa=%1fno1+ CY1Gn1 (11)
In = Yifn-1+ X19n-1 (12)
Hence,

f — 9%
X — Cyy = 1;271—2”
_ ( fr-1 + CY19n—1)2 —COnfp-1t xlgn—1)2

aZn—Z

_ X (fis = Cgin1) — Cyi (fis — Cga_1)
- a?2n-2

2 2
xy — Cy1
= gz (fies — Cgn-1)

Applying (10), it is easily seen that,

2 2 — 2n—4,2 _ _2n-2
fn—l - an—l =a a”=a

Hence, we conclude that,
xp—Cyy =xi —Cy{ = a®

Therefore, (x,,v,) is aso a solution of the Pell equation
x? — Cy? = a%. Since n is arbitrary, we get al integer
solutions of the pell equation x2 — Cy? = a?.

Since z,=x,+2+a, so tha =z, =a£’11+(2ia).
Therefore, (x,, v, z,) be the solution of the equation (7) for
which x2 — Cy? = a?.

Corollary: 2

Let (x;,y,) bethebasic solution of the Pell equation x? —
Cy? = a?, and then

PR L 13)

V= Y1xn—1:x13’n—1 (14)

Therefore z, = %W’H +2+ta) (15)
Xn  Xp-1| _

Also, | . yn_1| = —ay, (16)

Proof. In (8), we have f, = x{f_1 + Cy19n_1 @d g, =
Yifo-1+ X191

In (9), we have f, = a™'x, and g, = a™ 'y,.
Therefore, a™ x, = x;a™ 2x,_, + Cy,a™ 2y, _,

_ X1 X1+ CY1Yn_1
a

Xn

On the other hand, we have
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-1, _ -2 -2
a" Y =y Xy @ Y
_ Y1Xn—1 T X1Yna
n a
And then,
|xn xn—1|_xy — yx
Vi V-1 n/n-1 n'tn-1
_ X Xp_1+ CY1Yn—g
- a n-1
ViXn—1 t X1Yn-1
- " n-1
2 2 2
g —Cypg)  —yiat e
a a 1
Xn Xp-—1

Yn yn—1| BENCE
Sincez, = x, + 2 + a, we have

X1Xn-1+CY1Yn—
Z, = 1n1a 1n1+(2ia)-

Theorem: 3

Let (x;,y,) be the basic solution for the Pell equation x? —
Cy? = a?,and then (x,,y,, z,) satisfy the next repeating
relationship.

2
Xn = (;xl - 1) (Xp-1+ Xn—2) — Xp_3 (17)
Yn = (Exl - 1) n-1+Yn-2) = ¥n-3 (18)

2
Zn = (;xl - 1) (Zn—l +2zyp — 2(2 + CZ)) - (Zn—3 -
22t ) (29
Proof.
The proof will be provided by submission to n.
We use (13), (14), and (15), we have

X2+ Cy? x?+x2-a?
Xy = =
a a
X, = lez —a (20)
2

V2 = x—1y1;XIy1 =L4Nn (21)
22=x2+(2ia)=§x12—a+(2ia) (22)

We use (13), (14), (15), (20), (21) and (22), we
have

= X1%, + Cy1y, %1 (%xf - a’) +Cy, (%xllﬁ)
3 = =

a a

(23)
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_ Nt xy, _ Y1 (%xf - Of) +x (%xﬂﬁ)

3

a a
4
V3 =M (ﬁ’ﬁz - 1) (24)
4 2
23=x3+(Zia)=x1(ﬁx1—3)+(Zia) (25)

Then with equations (13), (14), (15), (23), (24) and (25), we
getx, andy,

_XX3 + Cy1y3

4 4
_n b (Gzat —3)] + o [n (a2 - 1))
h a
8 8

x4=;xf‘—;x12+a (26)

4 4
oYXzt xys X (pr +?x12 -3- 1)
V4 = P = o
8 4
Va = X101 (;xf - ;) (27)
Zy,=%x,+ 2t a) =%xf—%x12+a+(2ia) (28)

Now to replace (20) and (23) in (17), we have it

2 4 2
X, = <EX1 - 1) (x1 (lez - 3) + Exlz - a) —-x;

And to substitute (21) and (24) in (18), we have

2
Vq = (Ex1 - 1) s +y2) =

To replace the last (22) and (25) in (19), we have

Z4 = (le - 1) (23 +2z,—2(2+ a)) - (21 -2+ a))

2 4 2,
=(Ex1—1) xl(?x1—3)+(21a)+;x1—a
+Q2+ta)-2Q+a)

—(q+Q+ta)-2(2+a))
8 4 2
=—=xt——xf+—=x} - 2% ——x} ——xf +3x, +
X1 ax1 e X3 X1 axl X1 xta

=
—x+Q2+a)
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8 , 8,
——xl—ax1+a+(21a)

Z4 -
a3

Which formulae are the same in (26), (27) and (28).So (17),
(18) and (19) hold n = 4. Now we assume that (17), (18)
and (19) hold n = 4 and we show that it holdsn + 1.

Redlly by (13), (14) and (15) and by guess we have

X1Xn + Cylyn
a

Xn+1 =

% [(é’ﬁ - 1) (Xn-1 + Xn_2) — xn—S]

a
[(%xl - 1) n-1+ Yn-2) — yn_3]
a

+ Cy,

(2 1) [xlxn—l + Cy1Yn-1 + X1Xp—2 T CY1}’n—2]

a

a
_ [xlxn—3 + CY1Yn—3]
a

2
= (Exl - 1) (xn + xn—l) —Xn-2
y — Y1Xn + X1Yn
n+l =T o
2
_ V1 [(ax1 - 1) (Xp-1 + xp_2) — xn—3]
= 20!
[(axl - 1) (yn—l + Yn—z) - yn—3]
+ x4
a
_ (2 ) [}’1xn—1 +X1Yn-1 | ViXn2t x1)’n—2]
- _xl - 1 +
a a a
_ [}’1xn—3 + x13’n—3]
a

2
= <Ex1 - 1) O + Yn-1) — Yn-2

Zn41 = Xpm T2t a

XX, +C
— 1+*n - yly"+(2¢a)

_h [(%xl - 1) (Xn—1 + xn—3) — xn_3]
a
[(%xl - 1) n-1+ Yn-2) — yn_3]

+C
Y1 P
+(2ta)
(2 ) [xlxn—l + Cy1Yn—1  X1Xn_o + C}’13’n—2]
=|l=-x -1 +
a a c a
X1 Xp—3 T+ _
_[1n3 Y1yn3]+(21a)
a
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2
(Exl - 1) (xn + xn—l) —Xp_p t 2+a)

2
(—xl - 1> (xn +Q2ta)+x,_,+2ta)

¢ -22+a)-x,,—-2*a)
+22+a)

- le - 1) (20 + 2p_1 — 22 £ )
~ (2 —2Q2 £ @)

This compl etes the proof.

We are now looking at another case x2? — Cy? = 2%
without giving proof of it because it can be proved in the
same way as the previous theorems proved.

Theorem: 4

Let (x;,y,) be the basic solutions of the Pell equation x? —
Cy* = 2% and

(fn) _ (x1 Cyl) (1)
In Y X% /\0
for n > 2. Then the complete solutions of the transcendental

equationz = x + 2 +/x2 — Cy?, (x? — Cy? =2%") are
(X, Yn, Z,), Where

(o Yo Za) = (2607 f,, 20070 g, 200D 4 (2 1 )
and (x,,, yy,, z,,) satisfy the next repetition relationship
Xn = (zl_tx1 = D(xp—1 + Xp2) — Xp3
Yn = (Zl_txl =D Wn-1+ Yn-2) = Yn-3
zn = (2170 — 1)(Zn—1 +2,,—2(2 % 0())
— (223 -2 1))
1. CONCLUSION
In this paper, we investigate the the Transcendental
equation v2z — 4 = \/x+\/Eyi x —+/Cy , where x% —

Cy? = a? or 2% It is interesting to see that the researcher
can also proceed for further resultsin this problem.
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