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Abstract: The basic properties like monotoni city, Darboux 
property, mean value property of symmetric Riemann-derivatives 
of order n of a real valued function f at a point x of its domain (a 
closed interval) is studied. In some cases, function is considered 
to be continuous or semi-continuous. 
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I. INTRODUCTION 

Symmetric Riemann-derivatives is a generalization of 
normal or ordinary or general symmetric derivatives. It is a 
blender of Riemann-derivatives and symmetric derivatives 
to form a new generalization of derivatives. 
Mathematicians worked towards Symmetric derivatives and 
Riemann-derivatives, then got a new outlook towards 
symmetric Riemann-derivatives. In 1954, P. L. Butzer and 
W. Kozakiewicz showed their work on the Riemann-
derivatives for integrable functions [7]. Later J. Marshall 
Ash, Stefan Catoiu and William Chin William worked on 
generalization of Riemann-derivatives and classification of 
generalized Riemann-derivatives(1967) [1] [2]. In 1974, P. 
S. Bullen and S. N. Mukhopadhyay discovered relation 
between different generalized derivatives [6]. From 1970 
and 1974, N. K. Kundu researched on properties of 
symmetric derivatives including conditions on a function’s 

symmetric derivatives for monotonicity [10] [11]. Around 
1972, C. L. Belna , M. J. Evans and P. D. Humke , on 
symmetric and ordinary differentiation [3]. Sorin 
Radulescu, Petrus Alexandrescu and Diana-Olimpia 
Alexandrescu published their paper on generalized 
Riemann-derivatives and it’s reference to study of 

qualitative property of a function in 2013 [13] [14]. 
Subhankar Ghosh worked on same field in his Ph. D. 
Thesis, namely SOME STUDIES ON HIGHER ORDER 
GENERALIZED DERIVATIVES, SYMMETRIC 
DERIVATIVES, DIVIDED DIFFERENCES AND THEIR 
INTERRELATIONS to Visva-Bharati University in 2017 
[8]. Many mathematicians such as B. S. Thompson [15], R. 
G. Bertle and D. R. Sherbert [4], A. Zygmund [16], A. 
Gordon Russel [9], S. N. Mukhopadhyay [12], A. M. 
Bruckner [5] compiled the findings so far in books or 
papers along with something new. In this section we have 
studied nth order symmetric Riemann-derivatives and have 
shown by example that symmetric Riemann-derivatives is 
more general than symmetric derivative. 
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Also we have proved some theorems regarding 
monotonicity and mean value theorem for symmetric 
Riemann-derivatives of a function having upper semi-
continuity and with property D as well as it’s relation with 

Riemann-derivatives. 

II.  DEFINITIONS AND NOTATIONS 

Definition 2.1.  Let  f  : R → R be a function. 

If     ℎ→0
𝑙𝑖𝑚𝑠𝑢𝑝   exists, where Δn 

s ( f , x ,h) 

= ∑𝑛
𝑖=0 (-1)n-i f (x -  + ih), then this limit  is said to 

be the  n-th  upper  symmetric  Riemann-derivative  of  f  at 
 x  and is denoted by  SRDn f (x). 

Similarly, the limit   ℎ→0
𝑙𝑖𝑚𝑖𝑛𝑓   , if  exists, is said 

to be the  n-th  lower symmetric  Riemann-derivative of  f at 
 x  and is denoted by  SRDn f (x). 

 
If both  SRDn

+f (x)   and   SRDn
- f (x)   exist and are equal, 

then this common value is said to be the n-th symmetric 
Riemann-derivative of  f  at  x  and is denoted by  SRDn f 
(x). 
Example 2.2.  (i) Let  f (x) = ex. 

Δn 
s (f, x,t) = ∑𝑛

𝑖=0 (-1)n-i f(x -  + it) 
 

=∑𝑛
𝑖=0 (-1)n-i e x- +it 

 

=ex∑𝑛
𝑖=0  (-1)n-i e(i-n)t 

 

𝑡→0
𝑙𝑖𝑚   = ex ∑𝑛

𝑖=0 (-1)n-i  

 
(ii) Let  f ( x) = sinx. 

Δn 
s (f, x,t) = ∑𝑛

𝑖=0 (-1)n-i f(x -  + it) 
 

=∑𝑛
𝑖=0 (-1)n-i sin{x -  + it} 
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=∑𝑛
𝑖=0 (-1)n-i  

 

𝑡→0
𝑙𝑖𝑚   = sinx∑𝑛

𝑖=0 (-1)n-i  + cosx∑𝑛
𝑖=0 (-1)n-i  

(iii) Let   f (x) = x2. 

Δ1 
s (f, x,t) =   f (x + ) – f (x - ) = (x + )2 - (x - )2 = 4x  = 2xt 

 

Δ2 
s (f , x ,t) = Δs f ( x + ) - Δs f (x - ) 

 
=f (x+t)-2f (x)+f (x-t) 

 
=(x+t)2-2 (x)2+ (x-t)2 

 
=2 t 2 

 
Δn 

s (f, x,t) = 0 if n > 2. 
 

So, SRD1 f (x) = 2x =  f ′(x) = RD1 f (x) , SRD2 f (x) = 2 = f ′′(x) = RD 2 f (x). 
Note 2.3.   Let 

f (x) = x2 sin   when  x ∈ Q 
= x3  when x ∈ Q 

Then  f ′′ (0) , f 2(0) , SDf 2(0) do not exist. But 
SRD2 f (0)  

= 𝑡→0+
𝑙𝑖𝑚 = 𝑡→0+

𝑙𝑖𝑚 = 𝑡→0+
𝑙𝑖𝑚 = 6 𝑡→0+

𝑙𝑖𝑚  = 6 𝑡→0+
𝑙𝑖𝑚 t = 0 

 
So, symmetric Riemann-derivative is more general than ordinary derivative, Peano derivative, symmetric derivative. 

 

III. SOME RESULTS 

Theorem 3.1.  Let f  be a continuous real valued 
function in [a,b], SRD1

+f  and  SRD1
-f  exist in a 

set E contained in [a,b] , then SRD1
+f , SRD1

-f  ∈ B1(E) .  
Moreover, if  (i) SRDnf   is finite , (ii) SRDif  is continuous 
in E , i = 0,1,...,n , (iii) SRDn+1

+f  and  SRDn+1
-f  exist in E , 

then  SRDn+1
+f , SRDn+1

-f  ∈  B1(E) . 

Proof.   Let be a function which is continuous in 
[a,b], SRDn

+f   and   SRDn
-f   exist in a set E contained in [a, 

b]. 
Since f is continuous in [a,b], SRD1

+f   and SRD1
-f   exist 

in E,  f  is differentiable in E. 

Suppose Fn(x) = ,h = .  It is obvious 
that Fn(x) is continuous in E. 

𝑛→∝
𝑙𝑖𝑚 limn→∞Fn(x) = ℎ→0+

𝑙𝑖𝑚  = SRD1
+f (x) 

So, SRD1 
+  f (x) ∈ B1(E). 

Suppose Gn(x) = ,h = . It is obvious that Gn(x) is continuous in E. 

𝑛→∝
𝑙𝑖𝑚 Gn(x) = ℎ→0−

𝑙𝑖𝑚  = SRD1
-f (x) 

So, SRD1 
-  f (x) ∈ B1(E). 

Suppose, moreover, if  (i) SRDn  f  is finite, (ii) SRDi f is continuous in E, i = 0,1,...,n, (iii) SRDn+1
+f   and  SRDn+1

-f  exist in E. 

Suppose Φm(x) = ,h = . It is obvious that Φm(x) is continuous in E. 

𝑚→∝
𝑙𝑖𝑚 Φm(x) = ℎ→0 

𝑙𝑖𝑚  = SRDn+1
+f (x) 

So, SRDn+1 
+f (x) ∈ B1(E). 

Suppose Ψm(x) = ,h = . It is obvious that Ψn(x) is continuous in E. 

𝑚→∝
𝑙𝑖𝑚 Ψm(x) = ℎ→0 

𝑙𝑖𝑚  = SRDn+1
-  f (x) 
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So,  SRDn+1 
–f (x) ∈ B1(E). 

Note 3.2.  Let  f  be a function in  [a,b]. If  f  is non-decreasing in  [a,b] , then                   SRDn f (x)  ≥  0  in  [a,b]. 
Proof.   Suppose α,β ∈ [a,b], such that α < β. So,  f (α) ≤ f (β). 
Now, for any x0 ∈ (a,b) and for any δ satisfying 0 < δ < (b - x0), we have  

f (x0 -  + δ) ≥ f (x0 - ). 

Δn 
s (f, x,h) = ∑𝑛

𝑖=0 (-1)n-i f(x -  + ih) 
Let us take h (> 0) in a way such that max{0,h,2h,...,(n - 1)h} ≤ δ. 
Hence, 

Δn 
s (f, x0,h) = ∑𝑛

𝑖=0 (-1)n-i f(x0 -  + ih) 
 

⇒ Δn 
s (f, x0 ,h) ≥∑𝑛−1

𝑖=0 (-1)n-i  f ( x0 - ) + f (x0 -  + nh) 
 

⇒ Δn 
s (f, x0,h) ≥ f (x0)∑𝑛

𝑖=0 (-1)n-i  + f (x0 -  + nh) – f (x0 - ) 
 

⇒ Δn 
s (f, x0,h) ≥ f (x0 - )(-1 + 1)n + f (x 0 -  + nh) – f (x0 - ) 

 

⇒ Δn 
s (f, x0,h) ≥ f (x0 -  + nh) – f (x0 - ) ≥ 0 

Then  SRDn f (x) = ℎ→0+
𝑙𝑖𝑚  ≥ 0 , provided the limit exists. 

 
Theorem 3.3.  Let f  be an upper semi-continuous 

function which has the property D in [a,b]. If  E = {
 and  f (E) has no sub-

interval, then  f  is non-decreasing in  [a,b]. 
Proof.  Suppose α , β ∈ [a,b], such that α < β. So, f (α) > 

f (β). 
Now, let y0 ∈ ( f (α) , f (β) ) such that y0 doesn’t belong to  f 
(E). 
Let S = {  and x0 = sup S. 

Since f  is an upper semi-continuous function with 
property D in [a,b], S is closed and thus x0 ∈ S. Therefore, f 
(x0) ≥  y0. We will show that f (x0) = y0. 
If not, there exist η satisfying f (β) < y0 < η < f (x0) and ξ ∈

, such that f (ξ) = η. It contradicts that x0 = sup S. 
So, f (x0) = y0. 
Since f is an upper semi-continuous function with 
property D in [a,b] and x0 < β, 

 
for  x0 < x < β, f (x) < f (x0). 

If 0 < δ < (β - x0), then f (x0 + δ) – f (x0) < 0. 
Again, f being upper semi-continuous function with property D in [a,b], for any y0 > y there is a neighbourhood U of  x0 such 
that y <  f (x) < y0, whenever x ∈ U. 

Δn 
s (f , x0, h) = ∑𝑛

𝑖=0 (-1)n-i f (x0 -  + ih) 
Let us take h (> 0) in a way such that 

x0 -  + ih ∈ Ux0+  for all i = 0,1,...,n and 
 

max{0, h,2h,...,(n - 1) h} ≤  δ. 
Therefore, 

Δn 
s (f , x0,h) = ∑𝑛

𝑖=0 (-1)n-i f (x0 -  + ih) 
 

⇒ Δn 
s (f,x0,h) < ∑𝑛−1

𝑖=0 (-1)n-i f (x0 - ) + f(x0 + ) 
 

⇒ Δn 
s (f , x0, h) <  f (x0 )∑𝑛

𝑖=0 (-1)n-i  + f (x0 + ) – f (x0 - ) 
 

⇒ Δn 
s (f , x0, h) < f (x0)(-1 + 1)n + f (x0 +  nh) – f (x0 - ) 
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⇒ Δn 
s (f , x0, h) <  f (x0 + ) – f (x0 - ) < 0 

 

Then  SRDn f (x0) = ℎ→0+
𝑙𝑖𝑚  ≤ 0, 

implies x0 ∈ S and hence y0 ∈ E, a contradiction. 
So, our initial assumption is wrong. There can not be  α , 
β ∈ [a,b], such that α < β. So,          f (α) > f (β). So,  f  is 
non-decreasing in [a,b]. 

Theorem 3.4.  Let f  be an upper semi-continuous 
function which has the property D in  [a,b] , SRDn f 

(x) ≥ 0 in in [a,b] except an enumerable set E. Then f  is 
non-decreasing in [a,b]. 

Proof.  Suppose ϵ > 0 be arbitrarily small number 
and g(x) =  f (x) + ϵ x. 

SRDn 
+ g(x) = ℎ→0+

𝑙𝑖𝑚  = ℎ→0+
𝑙𝑖𝑚  + ϵ  

ℎ→0+
𝑙𝑖𝑚 , where I(x) = x 

 
⇒ SRDn

+ g(x) ≤ SRDn
+ f (x) + ϵ 

 
as Δn 

s  (I, x, h) = 1 if n = 1 and Δn
s (I,x,h) = 0 if n ≥ 2, 

⇒ SRDn
+g(x) = SRDn

+f (x) 
 

Here, g is also an upper semi-continuous function with 
property D in [a,b], moreover g(E) is measurable thus 
contains no sub-interval. So, g is non-decreasing in [a,b]. 
Since ϵ is arbitrarily small positive number, f  is non-
decreasing in [a,b]. 

 
Theorem 3.5.  Let  f  be an upper semi-continuous 

function which has the property D in  [a,b] ,  SRDn f 
(x) ≥ 0 almost everywhere in [a,b] ,  SRDn

+ f (x) > -
∞ in [a,b] except an enumerable set E. Then f is non-
decreasing in [a,b]. 

 
Proof.  Let 

A = {x ∈ [a,b] : SRDn
+ f (x) < 0}. Clearly, m(A) = 0. 

Suppose σ  is a continuous, non-decreasing function in 
[a,b] such that Δn

s (σ, x, h) ≥ 0 in [a,b] except A. 
We consider an arbitrary small positive number ϵ  and 
take g(x) = f (x) + ϵ σ(x). Then g an upper semi-continuous 
function with property D in [a,b], 

SRDn 
+ g(x) 

=ℎ→0+
𝑙𝑖𝑚  

=ℎ→0+
𝑙𝑖𝑚

+  + ϵ ℎ→0+
𝑙𝑖𝑚  

=SRDn
+ f (x)+ ϵ SRDn

+ σ (x), 

Therefore, SRDn
+ g (x) ≥ 0 almost everywhere in [a,b] 

except A. Hence, g is non-decreasing in [a,b]. 
Since ϵ  is arbitrarily small positive number, f  is non-
decreasing in [a,b]. 

 
Note 3.6. Example of a function σ which is continuous, 

non-decreasing in [a,b] such that  Δn (σ,  x, h) ≥ 0  
in [a,b] except a set A of measure zero is a polynomial     
axk + bxk-2 + ... + λ , where the co-efficients are all positive 
and k is an even natural number. 

 
Theorem 3.7. If f  is continuous and SRDn f (x) exists 

in [a,b] then  SRDn
+ f (x) has Darboux  property in [a,b]. 

 

Proof.  Let us consider that SRDn
+ f (x) does not have 

Darboux property, then there exist       α ,β such that  f 
(α) < 0 , f (β) > 0 but  SRDn

+f (x) ≠ 0 for any x ∈ (α,β). 

Further, suppose  E+ =  , E-

 = ,  then 

[α, β] = E+ ⋃ E-. 

Let Q be (if any) non-degenerate component of E+. 
Then Q is an interval. Suppose c,d be the end points of Q. 
SRDn 

+ f > 0 in Q, so f is non-decreasing in Q. 
f being continuous and non-decreasing in [c,d], SRDn

+ f 
(c),SRDn

+ f (d) > 0. Therefore c,d ∈ Q, implies that Q is a 
closed interval. Q being arbitrary, every non-degenerate 
component of E+ is a closed interval. 
Following similar arguments, it can be shown that every 
non-degenerate component of E- is a closed interval. 
Let Q+ ,Q- be the collection of all non-degenerate 
components of E+ and E- respectively.Let Q= Q+ ⋃ Q-. Then 
any two distinct members of Q are disjoint. 
Hence, P = [α,β] -⋃ Q0, Q ∈ Q, is perfect and SRDn

+ f   has 
no point of continuity in P relative to P, which is a 
contradiction as SRDn

+ f  ∈ B[α,β]. 
Therefore, SRDn

+ f (x) must have Darboux property. 
 
Theorem 3.8.   If  f  is continuous in  [a,b]  and  SRDn f 

(x)  exists in  (a,b)  then there exists  c ∈ (a,b)  such that  f 
(b) – f (a) = (b - a) SRDn f (c). 

 
Proof.  Here we may have following two cases - 

Case 1: 
Let f (b) = f (a). Then, 

 
Subcase 1- In case SRDn f (x) ≥ 0 or SRDn f (x) ≤ 0  in  

(a,b). Thus  f  is monotone function. Now f  being 
continuous as well as monotone, f  is constant in (a,b), 
ensuring the existence of c. 
Subcase 2-In case f  is not monotone, SRDn f (α) < 0 and  
SRDn f (β) > 0  for some α,βin(a,b) and hence there 
exists ξ ∈ (a,b)  such that SRDn f ( ξ) = 0, implying c = ξ. 
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Case 2: 
 

Let f (b) ≠ f (a). Then, suppose Φ(x) = f (x) - Ax, A=constant. 
Clearly, Φ is continuous in [a,b] and SRDn Φ(x) exists in 
(a,b). 

Also, SRDnΦ(x) = SRDn f (x). 

Let us take A = . Thus, Φ(b) = Φ(a). By Case 1, 
there exists c ∈ (a,b) such that SRDn Φ(c) = 0 

⇒ SRDn f (c) = . 
This completes the proof of the theorem. 

 
Note 3.9.  Above results are applicable for any 

continuous function f. 

IV. CONCLUSION 

From above analysis and discussion, it is clear that the 
symmetric Riemann-derivatives can be a new type of 
generalized derivatives, can follow many monotonicity, 
mean value property, Darboux property etc, like ordinary 
and some other derivatives but only if some conditions are 
satisfied. We have to work more to decrease the number of 
these conditions and to find more results on a more 
generalized derivatives. 

 
Application 

The above work on symmetric Riemann-derivatives 
provides scope of finding new derivatives of a function 
which are more generalized than ordinary derivatives, even 
some other generalized derivatives, under less number of 
restrictions. This work can provide clue for farther findings 
on Riemann fractional derivatives and can be used in 
differential equations, specially in electrical and mechanical 
phenomena analysis. 
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