Hardy-Littlewood-Type Theorem for Mixed Fractional Integrals in Hölder Spaces

TulkinMamatov, Nemat Mustafoev, DilshodBarakaev, RanoSabirova

Abstract

We study mixed Riemann-Liouville fractional integration operators and mixed fractional derivative in Marchaud form of function of two variables in Hölder spaces of different orders in each variables. The obtained are results generalized to the case of Hölder spaces with power weight Keywords: functions of two variables, fractional derivative of Marchaud form, mixed fractional derivative, weight, mixed fractional integral, Hölder space.

I. INTRODUCTION

I In1928 H.G.Hardy and J.E.Littlewood [1] (see [13], Theorem 3.1 and 3.2) showed that the fractional integral

$$
\left(I_{0+}^{\alpha} \varphi\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{\varphi(t) d t}{(x-t)^{1-\alpha}}, \quad 0<x<1
$$

of order $\alpha \in(0,1)$ improves the Hölder behavior of its density exactly by the order α. More exactly, these operators establish an isomorphism between the spaces $H_{0}^{\lambda}([0,1])$ and $H_{0}^{\lambda+\alpha}([0,1])$ under the condition $\alpha+\lambda$. This result was extended in many directions: to the case of Hölder spaces with power weight [15] to the case of generalized Hölder spaces with characteristics from the Bari-Stechkin class [13], [14]; to the case of more general weights [16], [17], etc. Different proofs were suggested in [2], [3], where the case of complex fractional orders was also considered the shortest proof being given in [2].

In the multidimensional case, the statement about the properties of a map in Hölder spaces for a mixed fractional Riemann - Liouville integral was studied in [4]-[12].

As is known, the Riemann-Liouville fractional integration operator establishes an isomorphism between weighted Hölder spaces for functions one variable. But for functions

Manuscript received on 29 September 2021 | Revised Manuscript received on 10 October 2021 | Manuscript Accepted on 15 October 2021 | Manuscript published on 30 October 2021. * Correspondence Author

TulkinMamatov*, Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan. Email: mamatov.tulkin@mail.ru

Nemat Mustafoev, Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan. Email: mamatov.tulkin@mail.ru

DilshodBarakaev, Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan. Email: mamatov.tulkin@mail.ru

RanoSabirova, Department of Higher mathematics, Bukhara Technological Institute of Engineering, Bukhara, Uzbekistan. Email: mamatov.tulkin@mail.ru
© The Authors. Published by Lattice Science Publication (LSP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
two variable were not studied. This paper is aimed to fill in this gap. We study mixed Riemann-Liouville fractional integration operators and mixed fractional derivative in Marchaud form of function of two variables in Hölder spaces of different orders in each variables. The obtained results generalized to the case of Hölder spaces with power weight of functions of two variables.

Mixed Riemann-Liouville fractional integrals of order (α, β)
$\left(I_{0+0+0}^{\alpha, \beta} \varphi\right)(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{x} \int_{0}^{y} \frac{\varphi(t, s) d t d s}{(x-t)^{1-\alpha}(y-s)^{1-\beta}}$,
$x>0, y>0$.
Mixed fractional derivatives form Marchaud of order (α, β)
$\left(\mathrm{D}_{0+, 0+}^{\alpha, \beta} \varphi\right)(x, y)=\frac{\varphi(x, y)}{\Gamma(1-\alpha) \Gamma(1-\beta)} x^{-\alpha} y^{-\beta}+$
$+\frac{\alpha \beta}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{x} \int_{0}^{y} \frac{\varphi(x, y)-\varphi(t, s)}{(x-t)^{1+\alpha}(y-s)^{1+\beta}} d t d s, x>0, y>0$
(2)

Consider the operators in a rectangle $Q=\{(x, y): 0<x<b, 0<y<d\}$.

II. PRELIMINARY

For a continuous function $\varphi(x, y)$ on R^{2} we introduce the notation

$$
\begin{aligned}
& \binom{1,0}{\Delta_{h}}(x, y)=\varphi(x+h, y)-\varphi(x, y) \\
& \binom{0,1}{\Delta_{\eta}}(x, y)=\varphi(x, y+\eta)-\varphi(x, y) \\
& \binom{1,1}{\Delta_{h, \eta}}(x, y)=\varphi(x+h, y+\eta)-\varphi(x+h, y)-\varphi(x, y+\eta)+\varphi(x, y)
\end{aligned}
$$

So that
$\varphi(x+h, y+\eta)=\binom{1,1}{\Delta_{h, \eta}}(x, y)+\binom{0,1}{\Delta_{\eta}}(x, y)+$
$+\left(\bigwedge_{h}^{1,0} \varphi\right)(x, y)+\varphi(x, y)$.
Everywhere in the sequel by C, C_{1}, C_{2} etc we denote positive constants which may have different values in different occurrences and even in the same line.

Definition 1. Let $\lambda, \gamma \in(0,1]$. We say that $\varphi(x, y) \in H^{\lambda, r}(Q)$, if
$\left|\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{2}, y_{2}\right)\right| \leq C_{1}\left|x_{1}-x_{2}\right|^{\lambda}+C_{2}\left|y_{1}-y_{2}\right|^{\gamma}$
for all $\left(x_{i}, y_{i}\right) \in Q, i=1,2$.

Condition (4) is equivalent to the couple of the separate conditions

$$
\left|\left(\stackrel{1,0}{\Delta_{h}} \varphi\right)(x, y)\right| \leq C_{1}|h|^{\lambda},\left|\left(\begin{array}{|c}
0_{n}, 1
\end{array}\right)(x, y)\right| \leq C_{2}|\eta|^{\gamma}
$$

uniform with respect to another variable.
By $H_{0}^{\lambda, \gamma}(Q)$ we define a subspace of functions
$\varphi \in H^{\lambda, \gamma}(Q)$, vanishing at the boundaries $x=0$ and $y=0$ of Q.
Let $\lambda=0$ andlor $\gamma=0$. We put $H^{0,0}(Q)=L^{\infty}(Q)$ and

$$
\begin{aligned}
& H^{\lambda, 0}(Q)=\left\{\varphi \in L^{\infty}(Q):\left|\left(\stackrel{\Delta}{\Delta}_{n}^{1,0} \varphi\right)(x, y)\right| \leq C_{1}|h|^{\lambda}\right\}, \lambda \in(0,1] \\
& H^{0, \gamma}(Q)=\left\{\varphi \in L^{\infty}(Q):\left|\left(\stackrel{\Delta}{\Delta}_{\eta}^{0,1} \varphi\right)(x, y)\right| \leq C_{2}|\eta|^{\nu}\right\}, \gamma \in(0,1] .
\end{aligned}
$$

Definition 2. We say that $\varphi(x, y) \in \tilde{H}^{\lambda, \gamma}(Q)$, where $\lambda, \gamma \in(0,1]$, if

$$
\varphi \in H^{\lambda, \gamma}(Q) \text { and }\left|\binom{1,1}{\Delta_{h, \eta}}(x, y)\right| \leq C_{3}|h|^{\lambda}|\eta|^{\gamma} .
$$

We say that $\varphi \in \tilde{H}_{0}^{\lambda, \gamma}(Q)$, if $\varphi \in H^{\lambda, \gamma}(Q)$ and $\varphi(0, y) \equiv \varphi(x, 0) \equiv 0$.
These spaces become Banach spaces under the standard definition of thenorms:

$$
\begin{aligned}
&\|\varphi\|_{H^{2, \gamma}}:=\|\varphi\|_{C(Q)}+\sup _{\substack{x, x+n \in[0, b] \\
y[0,0]]}} \frac{\left|\left(\Delta_{h} \varphi\right)(x, y)\right|}{|h|^{2}}+ \\
&\left.+\sup _{\substack{y, y+n \in[0, b] \\
x \in[0, b]}} \frac{\mid\left(\Delta_{n}, 1\right.}{0,1} \varphi\right)(x, y) \mid \\
&|\eta|^{\gamma}
\end{aligned},
$$

Note that
$\varphi(x, y) \in H^{\lambda, \gamma}(Q) \Rightarrow\left|\binom{1,1}{\Delta_{h, \eta}}(x, y)\right| \leq C_{\theta}|h|^{\theta \lambda}|\eta|^{(1-\theta) \gamma}$
(5)
for any $\theta \in[0,1]$, where $C_{\theta} 2=C_{1}^{\theta} C_{2}^{1-\theta}$.
Proof. Let $|h|^{\lambda} \geq|\eta|^{\gamma}$, then

$$
\begin{gathered}
\left\lvert\, \begin{array}{c}
\binom{1,1}{\Delta_{h, \eta}}(x, y)|=| \varphi(x+h, y+\eta)-\varphi(x, y+\eta)- \\
-\varphi(x+h, y)+\varphi(x, y) \mid \leq \\
\leq \\
+|\varphi(x+h, y+\eta)-\varphi(x+h, y)|+ \\
= \\
=C|\eta(x, y+\eta)-\varphi(x, y)| \leq C|\eta|^{\gamma[\theta+(1-\theta)]} \leq C_{\theta}|h|^{\theta \lambda}|\eta|^{(1-\theta) r} .
\end{array} .\right.
\end{gathered}
$$

Case $|h|^{\lambda} \leq|\eta|^{\gamma}$ is considered similar.
So that
$\left.\left.\bigcap_{0 \leq \theta \leq 1} \tilde{H}^{\lambda \theta,(1-\theta) \gamma}(Q)\right\lrcorner H^{\lambda, \gamma}(Q)\right\lrcorner \tilde{H}^{\lambda, \gamma}(Q)$
where \downarrow stands for the continuous embedding.
The norm for $\bigcap_{0 \leq \theta \leq 1} \tilde{H}^{\lambda \theta,(1-\theta) \gamma}(Q)$ is introduced as the maximum in θ of norms for $\tilde{H}^{\lambda,(1-\theta) y}(Q)$. Since $\theta \in[0,1]$ is
arbitrary, it is not hard to see that the inequality in (5) is equivalent (up to the constant factor C) to
$\left|\left(\begin{array}{c}1,1 \\ \Delta, \eta\end{array} \varphi\right)(x, y)\right| \leq C \min \left\{|h|^{2},|\eta|^{\nu}\right\}$.
We will also make use of the following weighted spaces. Let $\rho(x, y)$ be a non-negative function on Q (we will only deal with degenerate weights $\rho(x, y)=\rho_{1}(x) \rho_{2}(y)$).

Definition 3. By $H^{\lambda, \gamma}(Q, \rho)$ and $\tilde{H}^{2, \gamma}(Q, \rho)$ we denote the spaces of functions $\varphi(x, y)$ such that $\rho \varphi \in H^{\lambda, \gamma}(Q)$ and $\rho \varphi \in \tilde{H}^{\lambda, \gamma}(Q)$ respectively, equipped with the norms

$$
\|\varphi\|_{H^{\lambda, \gamma}(Q, \rho)}=\|\rho \varphi\|_{H^{a, \gamma}(Q)} \text { and }\|\varphi\|_{\tilde{H}^{2, \gamma, v}(Q, \rho)}=\|\rho \varphi\|_{\tilde{H}^{2, \gamma, \gamma}(Q)} .
$$

By $H_{0}^{\lambda, \gamma}(Q, \rho)$ and $\tilde{H}_{0}^{\lambda, \gamma}(Q, \rho)$ we denote the corresponding subspaces of functions φ such that $\left.\rho \varphi\right|_{x=0}=\left.\rho \varphi\right|_{y=0} \equiv 0$.

Below we follow some technical estimations suggested in [2] for the case of one-dimensional Riemann-Liouville fractional integrals. We denote
$B(x, y ; t, s)=\frac{\rho(x, y)-\rho(t, s)}{\rho(t, s)(x-t)^{\delta}(y-s)^{\sigma}}$,
where $0<\delta, \sigma<2, a<t<x<b, 0<s<y<d$ and
$B_{1}(x, t)=\frac{\rho_{1}(x)-\rho_{1}(t)}{\rho_{1}(t)(x-t)^{\delta}}, \quad B_{2}(y, s)=\frac{\rho_{2}(y)-\rho_{2}(s)}{\rho_{2}(s)(y-s)^{\sigma}}$.
In the case $\rho(x, y)=\rho_{1}(x) \rho_{2}(y)$ we have

$$
B(x, y ; t, s)=B_{1}(x, t) B_{2}(y, s)+\frac{B_{1}(x, t)}{(y-s)^{\sigma}}+\frac{B_{2}(y, s)}{(x-t)^{\sigma}} .
$$

Let also
$D_{1}(x, h, t)=B_{1}(x+h, t)-B_{1}(x, t), t, x, x+h \in[0, b], h>0$,
$D_{2}(y, \eta, s)=B_{2}(y+\eta, s)-B_{2}(y, s), s, y, y+\eta \in[0, d], \eta>0$.
Lemma 1 ([2]). Let $\rho_{1}(x)=x^{\mu}, \mu \in \mathrm{R}^{1} \quad$ and $\delta=1-\alpha, \alpha \in(0,1)$. Then
$\left|B_{1}(x, t)\right| \leq C\left(\frac{x}{t}\right)^{\max (\mu-1,0)} \frac{(x-t)^{\alpha}}{t}$,
$\left|D_{1}(x, t, h)\right| \leq C\left(\frac{x+h}{t}\right)^{\max (\mu-1,0)} \frac{h}{t(x+h-t)^{1-\alpha}}$.
Lemma 2 ([2]). Let $\rho_{1}(x)=x^{\mu}, \mu \in \mathrm{R}^{1} \quad$ and $\delta=1+\alpha, \alpha \in(0,1)$. Then
$\left|B_{1}(x, t)\right| \leq C\left(\frac{x}{t}\right)^{\max (\mu-1,0)} \frac{1}{t(x-t)^{\alpha}}$,
$\left|D_{1}(x, t, h)\right| \leq C\left(\frac{x+h}{t}\right)^{\max (\mu-1,0)} \frac{h}{t(x+h-t)(x-t)^{\alpha}}$.
Similar estimates hold for $B_{2}(y, s)$ and $D_{2}(y, \eta, s)$ with $\rho(y)=y^{\mu}$.

Remark. All the weighted estimations of fractional integrals in the sequel are based on inequalities (10)-(13). Note that the right-hand sides of these inequalities have the exponent $\max (\mu-1,0)$, which means that in the proof it suffices to consider only the case $\mu \geq 1$,
evaluations for $\mu<1$ Mathemax. being the same as for $\mu=1$.

The following statement is known (see the presentation of this proof in [16], p. 190); a shorter proof was given in [2]. Nevertheless we recall the scheme of the proof from [2] to make the presentation easier for the two-dimensional case.

Let $\rho(x)$ the weight function and put $\psi(x)=\rho(x) \varphi(x)$, $\varphi \in H_{0}^{\lambda}([0, b] ; \rho)$. Evidently $\psi(x) \in H_{0}^{\lambda}([0, b])$ and $\psi(0)=0$. It is easy to see that
$\left(\rho I_{0+}^{\alpha} \varphi\right)(x)=\left(I_{0+}^{\alpha} \psi\right)(x)+\left(M_{0+}^{\alpha} \psi\right)(x)$,
where

$$
\left(M_{0+}^{\alpha} \psi\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} B_{1}(x, t) \psi(t) d t,
$$

so that in (14) we have the fractional integral if $0<\alpha<1$ and the fractional derivative if $-1<\alpha<0$.

The representation (14) for the fractional (integral) derivative shows that the estimate for the continuity modulus in the weighted case reduces to two simpler estimates:

1) the known non-weighted estimate of Hardy-Littlewood for fractional integral and fractional derivative;

2) the estimate of the second term in (14), which is the main part of the job.
Theorem 1. Let $0<\alpha<1, \rho(x)=x^{\mu}$ and $|\psi(x)| \leq C x^{\alpha+\lambda}$ with $\mu<1+\lambda$. Then operator $\left(M_{0+}^{-\alpha} \psi\right)(x) \in H^{\lambda}([0, b])$, $\lambda+\alpha<1$ and

$$
\left\|\left(M_{0+}^{-\alpha} \psi\right)(x)\right\|_{H^{2}} \leq C \sup _{x \in 0, b\rangle}\left|\frac{\psi(x)}{x^{\alpha+\lambda}}\right| .
$$

Proof. In the proof, we use the following notation

$$
\left(M_{0+}^{-\alpha} \psi\right)(x+h)-\left(M_{0+}^{-\alpha} \psi\right)(x)=F_{1}(x, h)+F_{2}(x, h),
$$

where

$$
\begin{aligned}
& F_{1}(x, h)=\int_{x}^{x+h} B_{1}(x+h, t) \psi(t) d t \\
& F_{2}(x, h)=\int_{0}^{x} D_{1}(x, h, t) \psi(t) d t
\end{aligned}
$$

The estimate of F_{1} in the case $1 \leq \mu<1+\lambda$. The estimate (12) for $B_{1}(x, t)$ implies

$$
\begin{aligned}
& \left|F_{1}\right| \leq C(x+h)^{\mu-1} \int_{x}^{x+h} \frac{t^{\lambda+\alpha-\mu} d t}{(x+h-t)^{\alpha}}= \\
& =C(x+h)^{\lambda} \int_{0}^{\frac{h}{x+h}} \xi^{-\alpha}(1-\xi)^{\lambda+\alpha-\mu} d \xi \leq C_{1} h^{\lambda}
\end{aligned}
$$

where

$$
C_{1}=C \sup _{0<\varepsilon<1} \frac{1}{\varepsilon^{\lambda}} \int_{0}^{\varepsilon} \xi^{-\alpha}(1-\xi)^{\lambda+\alpha-\mu} d \xi<\infty
$$

The estimate of F_{2} in the case $1 \leq \mu<1+\lambda$. Applying the estimate (13) for $D_{1}(x, h, t)$, we obtain

$$
\begin{aligned}
& \left|F_{2}\right| \leq C(x+h)^{\mu-1} \int_{x}^{x+h} \frac{t^{\lambda+\alpha-\mu} d t}{(x+h-t)(x-t)^{\alpha}}= \\
& =C h(x+h)^{\lambda-1} \int_{0}^{\frac{x+h}{h}} \frac{\xi^{\lambda+\alpha-\mu} d \xi}{(1-\xi)\left(\frac{x}{x+h}-\xi\right)^{\alpha}} \leq C_{2} h^{\lambda}
\end{aligned}
$$

where

$$
C_{2}=C \sup _{0<\varepsilon \Lambda} \varepsilon^{1-\lambda} \int_{0}^{1-\varepsilon} \frac{\xi^{\lambda+\alpha-\mu} d \xi}{(1-\xi)(1-\varepsilon-\xi)^{\alpha}}<\infty .
$$

$$
\begin{aligned}
& +\int_{0}^{x} \int_{0}^{y} D_{1}(x, h, t) B_{2}(y, s) \psi(t, s) d t d s+ \\
& +\int_{x}^{x+h} \int_{0}^{y} B_{1}(x+h, t) \frac{\psi(t, s)}{(y-s)^{1+\beta}} d t d s+ \\
& +\int_{0}^{x} \int_{0}^{y} D_{1}(x, h, t) \frac{\psi(t, s)}{(y-s)^{1+\beta}} d t d s+ \\
& +\int_{x}^{x+h} \int_{0}^{y} B_{2}(y, s) \frac{\psi(t, s)}{(x+h-t)^{1+\alpha}} d t d s+ \\
& +\int_{0}^{x} \int_{0}^{y} B_{2}(y, s) \psi(t, s)\left[(x+h-t)^{-1-\alpha}-(x-t)^{-1-\alpha}\right] d t d s .
\end{aligned}
$$

Since $\psi \in \tilde{H}_{0}^{\lambda+\alpha, \gamma+\beta}$, we have
$|\psi(t, s)| \leq C t^{\lambda+\alpha} s^{\gamma+\beta}$,
$|\psi(t, s)-\psi(x, 0)| \leq C(t-x)^{\lambda+\alpha} s^{\gamma+\beta}$.
Use (16) and (13) for variable s, we obtained

$$
\begin{gathered}
\left|G_{2}(x+h, y)-G_{2}(x, y)\right| \leq C\left\{\left(\int_{x}^{x+h}\left|B_{1}(x+h, t)\right| t^{\lambda+\alpha} d t+\right.\right. \\
+\int_{0}^{x}\left|D_{1}(x, h, t)\right| t^{\lambda+\alpha} d t+\int_{x}^{x+h} \frac{(t-x)^{\lambda+\alpha}}{(x+h-t)^{1+\alpha}} d t+ \\
\left.+\int_{0}^{x}\left|(x+h-t)^{-1-\alpha}-(x-t)^{-1-\alpha}\right|(t-x)^{\lambda+\alpha}\right) y^{\nu-1} \int_{0}^{y} \frac{(y-s)^{\gamma}}{s^{v}} d s+ \\
+\left(\int_{x}^{x+h}\left|B_{1}(x+h, t) t^{\lambda+\alpha} d t+\int^{x}\right| D_{1}(x, h, t) \left\lvert\, t^{\lambda+\alpha} d t \int_{0}^{y} \frac{s^{\gamma+\beta} d s}{(y-s)^{1+\beta}}\right.\right\}
\end{gathered}
$$

Hence, by estimates for F_{1} and F_{2} from Theorem 1, we have

$$
\left|G_{2}(x+h, y)-G_{2}(x, y)\right| \leq C_{1} h^{\lambda}
$$

The estimate

$$
\left|G_{2}(x, y+\eta)-G_{2}(x, y)\right| \leq C_{2} \eta^{\gamma}
$$

is symmetrical obtained.
For the mixed difference $\left(\begin{array}{l}1,1 \\ \Delta_{h, \eta}\end{array} G_{2}\right)(x, y)$ with $h, \eta>$ and $x, x+h \in[0, b] \quad, \quad y, y+\eta \in[0, d]$ the appropriate representation leading to the separate evaluation in each variable without losses in another variable is as follows:

$$
\begin{aligned}
& \left(\begin{array}{l}
1,1 \\
\Delta_{h, \eta}
\end{array} G_{2}\right)(x, y)=\int_{x}^{x+h} \int_{y}^{y+\eta} B_{1}(x+h, t) B_{2}(y+\eta, s) \psi(t, s) d t d s+ \\
& \quad+\int_{0}^{x} \int_{0}^{y} D_{1}(x, h, t) D_{2}(y, \eta, s) \psi(t, s) d t d s+ \\
& \quad+\int_{x}^{x+h} \int_{0}^{y} B_{1}(x+h, t) D_{2}(y, \eta, s) \psi(t, s) d t d s+ \\
& +\int_{0}^{x} \int_{y}^{y+\eta} D_{1}(x, h, t) B_{2}(y+\eta, s) \psi(t, s) d t d s+ \\
& +\int_{x}^{x+h} \int_{0}^{y+\eta} \frac{B_{1}(x+h, t)}{(y+\eta-s)^{1+\beta}} \psi(t, s) d t d s+ \\
& +\int_{0}^{x} \int_{y}^{y+\eta} \frac{D_{1}(x, h, t)}{(y+\eta-s)^{1+\beta}} \psi(t, s) d t d s+ \\
& \quad+\int_{x}^{x+h} \int_{0}^{y} \frac{D_{2}(y, \eta, s)}{(x+h-t)^{1+\alpha}} \psi(t, s) d t d s+
\end{aligned}
$$

7. T. Mamatov,Mapping properties of mixed fractional differentiation operators in Hölder spaces defined by usual Hölder condition. Journal of Computer Science and Computational Mathematics, vol. 2(9), 2019, pp. 29-34. [CrossRef]
8. T. Mamatov,Composition of mixed Riemann-Liouville fractional integral and mixed fractional derivative. Journal of Global Research in Mathematical Archives, vol. 6(11), 2019,pp. 23-32.
9. T. Mamatov, D. Rayimov and M. Elmurodov,Mixed Fractional Differentiation Operators in Hölder Spaces. Journal of Multidisciplinary Engineering Science and Technology (JMEST),vol. 6 (4), 2019, pp. 106-110
10. T. Mamatov,Fractional integration operators in mixed weighted generalized Hölder spaces of function of two variables defined by mixed modulus of continuity. "Journal of Mathematical Methods in Engineering" AuctoresPublishing, vol.1(1)-004, 2019, pp. 1-16
11. T. Mamatov,"Mixed fractional integration operators in mixed weighted Hölder spaces" (Monograph Online Sources), LAP LAMBERT Academic Publishing, Beau Bassin, 2018,p. 73.
12. T. Mamatov, Operatorof Volterra convolution type in generalized Hölder spaces. Poincare Journal of Analysis \& Applications, vol. 7 (2), 2020, pp. 275-288. [CrossRef]
13. Kh. M. Murdaevand S. G. Samko,Weighted estimates of continuity modulus of fractional integrals of function having a prescribed continuity modulus with weight. Deponierted in VINITI, Moscow, 1986, 3351-B, pp. 42.
14. Kh. M. Murdaev and S.G. Samko,Mapping properties of fractional integro-differentation in weighted generalized Hölder spaces $H_{0}^{\omega}(\rho)$ with the weight $\rho(x)=(x-a)^{\mu}(b-x)^{v}$ and given continuity modulus. Deponierted in VINITI, Moscow, 1986, 3350-B,pp. 25.
15. B.S. Rubin,Fractional integrals in Hölder spaces with weight and operators of potential type. Izv.Akad.NaukArmyan.SSR Ser. Math. vol. 9(4), 1974, pp. 308-324.
16. S.G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivaties (Book style). Theory and Applications, Gordon and Breach.Sci.Publ. N.York-London, 1993, pp. 1012.
17. S.G. Samko and Z. Mussalaeva, Fractional type operators in weighted generalized Hölder spaces. Proc. Georgian Acad.Sci., Mathem. vol. 1(5), 1993, pp. 601-626. [CrossRef]

AUTHORS PROFILE

TulkinMamatov,He is the author of over 50 scientific articles, published 2 monographs in the specialty "Mathematical Analysis".

