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Abstract: In this Research Method of Line is used to find the 
approximation solution of one dimensional singularly perturbed 
Burger equation given with initial and boundary conditions. First, 
the given solution domain is discretized and the derivative 
involving the spatial variable x is replaced into the functional 
values at each grid points by using the central finite difference 
method. Then, the resulting first-order linear ordinary differential 
equation is solved by the fifth-order Runge-Kutta method. To 
validate the applicability of the proposed method, one model 
example is considered and solved for different values of the 
perturbation parameter ‘  ’ and mesh sizes in the direction of the 

temporal variable, t. Numerical results are presented in tables in 

terms of Maximum point-wise error, 
,N tE


 and rate of 

convergence, 
,N tP


. The stability of this new class of Numerical 

method is also investigated by using Von Neumann stability 
analysis techniques.  The numerical results presented in tables 
and graphs confirm that the approximate solution is in good 
agreement with the exact solution. 

Keywords: Burger equation, perturbation parameter, 
Method of line, Von Neumann stability analysis.  

I. INTRODUCTION 

Numerical analysis is a subject that involves 

computational methods for studying and solving 
mathematical problems. It is a branch of mathematics and 
computer science that creates, analyzes, and implements 
algorithms for solving mathematical problems numerically 
[2]. Also, it’s widely used by scientists and engineers to solve 
some problems. Such problems may be formulated in terms of 
an algebraic equation, transcendental equations, ordinary 
differential equations, and partial differential equations [1], 
[3]. Numerical analysis is also concerned with the theoretical 
foundation of numerical algorithms for the solution of 
problems arising in scientific applications  [3].  
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Applications of PDEs can be found in physics, engineering, 
mathematics, and finance [1], [3], [16]. For instance, include 
modeling mechanical vibration, heat, sound vibration, 
elasticity, and fluid dynamics [16].Although PDEs have a 
wide range of applications to real-world problems in science 
and engineering, the majority of PDEs do not have analytical 
solutions. It is, therefore, important to be able to obtain an 
accurate solution numerically. Many computational methods 
have been developed and implemented to successfully 
approximate solutions for mathematical modeling in the 
application of PDEs. To make use of mathematical models, it 
is necessary to have solutions to the model equations. 
Generally, this requires numerical methods because of the 
complexity and number of equations [4] Scientists in the field 
of computational mathematics are trying to develop more 
accurate numerical methods by using computers for further 
application [16]. One of those numerical methods is a method 
of line. Burgers’ equation, which belongs to the class of 
Navier–Stokes equation, is a fundamental partial differential 
equation from the model of fluid mechanics analyses [4, 15]. 
It was first introduced by Bateman [6]. In 1948, Burgers 
(1939, 1948) introduced one-dimensional PDEs, to capture 
some features of turbulent fluid in a channel caused by the 
interaction of the opposite effects of convection and diffusion; 
it arises in the theory of shock waves, in turbulence problems, 
and continuous stochastic processes [12]. 

The structure of Burgers’ equation is roughly similar to 
that of Navier-Stokes equations due to the presence of the 
non-linear convection term and the occurrence of the 
diffusion term with viscosity coefficient. So this equation can 
be considered as a simplified form of the Navier-Stokes 
equations [7], [9].  

The study of the general properties of the Burgers’ 

equation has attracted the attention of the scientific 
community due to its applications in various fields such as gas 
dynamics, heat conduction, elasticity, etc [7]. 

 The study of the solution of Burgers’ equation has been 

carried out for the last half-century and still, it is an active area 
of research to develop a better numerical scheme to 
approximate its solution. Due to the wide range of the 
application of the one-dimensional Burgers equation, several 
numerical methods have been developed. Even though many 
numerical methods were applied to solve these types of 
equations.  Accordingly, more efficient and simpler numerical 
methods are required to solve the Burgers equation. In the 
literature review, many researchers have used various 
methods to seek the numerical solutions of 1D Burgers’ 

equation [6]--[10].  
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Similarly, the coupled and 2D Burgers’ equations are 

solved by many researchers with different numerical methods. 
 Abazaria and Borhanifar presented the solution of coupled 
and 2D Burgers’ equations by using the differential transform 

method (DTM).DTM is a semi-numerical–analytic technique 
that formalizes the Taylor series differently. The Taylor series 
method is computationally time-consuming for large orders 
and high contaminated round-off error and truncation error. 
Asaithambi [14] presented a Numerical solution to the 
Burgers’ equation by using automatic differentiation. 
Kutluay, Esen, and Dag in [20] are presented a Numerical 
solution of the Burgers’ equation by the least-squares 
quadratic B-spline finite element method. Khater [13] 
proposed the Chebyshev spectral collocation method for 
solving the coupled Burgers’ equations. With pseudo-spectral 
methods care must be taken with the round-off error issue 
when higher derivatives or a large several points N is 
involved. For instance, the utilization of Chebyshev 
collocation methods incurs a rounding-off error of order 
(N2ke), where k is the order of the PDE and e is the machine 
zero. This can ruin the computed solution even if k and N are 
not large. Gowrisankar, S., and Natesan, S. in [15], present the 
numerical solution of singularly perturbed initial-boundary 
Burgers’ equation by using an efficient robust numerical 
method. They provide an e-uniformly convergent numerical 
method for the singularly perturbed Burger. They obtain 
uniform convergence concerning the perturbation 
parameter  . Even though the method is capable of 
approximating Burger’s equation, they failed to solve a 
relatively small perturbation parameter  . However, still, the 
accuracy of the method needs attention; because the treatment 
of the method used to solve the Burger equation is not trivial 
distribution. Even though the accuracy of the aforementioned 
methods needs attention, sometimes they require large 
memory or long computational time besides costing. So the 
treatments of this method present severe difficulties that have 
to be addressed to ensure the accuracy of the solution. 

To this end, this paper aims to develop a numerical 
method that is capable of solving singularly perturbed 
initial-boundary Burger equation for any     and 
approximate the exact solution. The convergence has been 

shown in the sense of L   norm so that the local behavior of 

the solution is captured exactly. The stability of the present 
method is also investigated by using Von Neumann stability 
analysis techniques. 

II.  PRELIMINARIES 

2.1 Singularly Perturbed Problem 

A singular perturbation problem is one for which the 
perturbed problem is qualitatively different from the 
unperturbed problem. One typically obtains an asymptotic, 
but possibly divergent, expansion of the solution, which 
depends singularly on the parameter  . Although singular 
perturbation problems may appear typical, they 
are the most interesting problems to study because they allow 
one to understand qualitatively new phenomena.  

The solutions of singular perturbation problems involving 
differential equations often depend on several widely 
different length of time scales. Such problems can be divided 
into two broad classes: layer problems, treated using the 

method of matched asymptotic expansions (MMAE); and 
multiple-scale problems, treated by the method of multiple 
scales (MMS) [15]. Brandt’s boundary layer theory for the 

high Reynolds flow of a viscous fluid over a solid body is an 
example of a boundary layer problem and the semi-classical 
limit of quantum mechanics is an example of a multiple-scale 
problem [15]. An example of the perturbation problem is 
singularly perturbed Burgers’ initial-boundary-value 
problem. Under suitable continuity and compatibility 
conditions on the data, the IBVP in EQs (1) has a unique 
solution, [15]. 

They used Cole–Hopf transformation which transforms 
the Burgers’ equation to 
a linear diffusion equation and this diffusion equation can be 
solved exactly for 
an arbitrary initial condition with regularity assumption on the 
initial and boundary 
conditions. In addition to these, they can assure that boundary 
layer occurs in the solution when 0    at the boundary of 
the domain x = 1; the solution varies rapidly, while away from 
the layer the solution changes slowly, and smoothly. The 
accuracy of the method is decreased. 

Beckett, B, and Mackenzie have presented a numerical 
solution for one-dimensional convection– and 
reaction-diffusion problems using equidistribution of the 
singular component of the solution in [17]. Moreover, 
space-time parabolic reaction-diffusion and 
convection-diffusion evolution problems are analyzed by 
Gowrisankar and Natesan in [18], [19]. 

2.2.  The Numerical Method of Lines 

The method of lines (MOL) is a convenient procedure for 
solving time-dependent PDEs, which proceeds in two 
separate steps: Approximation of the spatial derivatives using 
finite differences, finite elements, or finite volume methods 
(or any other techniques), and time integration of the resulting 
semi-discrete (discrete in space, but continuous in time) 
ODEs [11]. 

The method of lines (MOL, NMOL) [5],[22],[23] is a 
technique for solving partial differential equations (PDEs) in 
which all but one dimension is discretized [22]. MOL allows 
standard, general-purpose methods and software, developed 
for the numerical integration of ODEs and DAEs, to be used 
[11]. Many integration routines have been developed over the 
years in many different programming languages and some 
have been published as open-source resources [24].  The 
method of lines most often refers to the construction or 
analysis of numerical methods for partial differential 
equations that proceeds by first discretizing the spatial 
derivatives only and leaving the time variable continuous.  
This leads to a system of ordinary differential equations to 
which a numerical method for initial value ordinary equations 
can be applied. The method of lines in this context dates back 
to at least the early 1960s [11], [25]. Many papers discussing 
the accuracy and stability of the method of lines for various 
types of partial differential equations have appeared in 
[26],[27].  
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MOL requires that the PDE problem is well-posed as an initial 
value (Cauchy) the problem in at least one dimension because 
ODE and DAE integrators are initial value problem (IVP) 
solvers [11], [19]. 

 Thus it cannot be used directly on purely elliptic partial 
differential equations, such as Laplace’s equation. However, 

MOL has been used to solve Laplace’s equation by using the 

method of false transients [19]. In this method, a time 
derivative of the dependent variable is added to Laplace’s 

equation. Finite differences are then used to approximate the 
spatial derivatives and the resulting system of equations is 
solved by MOL. It is also possible to solve elliptical problems 
by a semi-analytical method of lines [29],[30]. In this method, 
the discretization process results in a set of ODE’s that are 

solved by exploiting properties of the associated exponential 
matrix. Recently, to overcome the stability issues associated 
with the method of false transients, a perturbation approach 
was proposed which was found to be more robust than the 
standard method of false transients for a wide range of elliptic 
PDEs [31] 

III. DESCRIPTION OF THE METHOD, RESULTS, AND 
DISCUSSION 

3.1 Description of the Method 

Consider the following singularly perturbed Burgers’ 

initial-boundary-value problem (IBVP) considered in [15]:  

   
2

2
, ,

u u u
u x t x t

t x x


   
  

   
,

( , ) (0,1) (0, ]x t T                                              (1) 

subject to initial  and boundary conditions: 

           
  1,0 ( )x f xu  ,   0 1x                      (2) 

            
(0, ) (1, ) 0u t u t  ,     0 t T                (3) 

Here, where 0 <   << 1 is a small perturbation 

parameter 1 ( )f x , is continuous and differentiable functions. 

The computational domain [ , ] [0, ]a b T  is partitioned 

as: 0 1 10 ..... ... 1j j Mx x x x x       
,

0 1 10 ..... ...n n Nt t t x x T       
                   (4)

 

 1j jh x x    and 1j jt t t   where h  and 

t are mesh-size of [0,1] and [0, ]T  

3.2. Discretizing Partial Derivative involving with Spatial 

Variable 

Recalling that the one-dimensional singularly perturbed 
Burgers’ initial-boundary value problem (IBVP) given in Eq 
(1), we aim to approximate the partial derivative of u(x,t) 
involving spatial variable. The given non-linear PDE in Eq(1) 
is reduced into the system of no linear ODEs by using the 
method of line. The idea of the method of the line is 
discretizing partial derivative involving spatial variable by 
using central finite difference method and the remaining part 
of variable is discretized. 

Now the discretizing of partial derivative involving a 
spatial variable by using central difference method is:      

      

1, 1,

2
j n j nu uu

x h
 




,                                          (5)   

 

2
1, , 1,

2 2

2
,j n j n j nu u uu

x h
  




                               (6)   

where j = 1,2,3,…,M in direction of special variable. 

Substituting Eqs,(5) and (6) 
into singularly perturbation Burger’s equation given in Eq (1), 
we obtain the system 
of the non-linear differential equation of the form: 

1 1 1 1

2

2
( , )

2
j j j j j

j j

u u u u uu
x t u

t h h


        
    

    
     

                                                                                      (7)                                                                                                                                                                                                 

wherein Eq.(7). Hence the given equation is further 
discretized in space for a first-order and second-order spatial 
derivative and then obtains a semi discretized scheme 
corresponding to Burger’s equation. In this discretization, we 
consider redistributing grid points for spatial direction. The 
distributive of mesh point in the domain, outside and inside of 
boundary layer region almost equal for both spatial and 
temporal variables.  

3.3. Results and Discussion 

That method of the line is used to approximate  ( , )
u

x t
x




  

and 
2

( , )
u

x t
x




 by using the central difference method at N 

grid point in the spatial direction in,[0;1]. Then 
from Eqs (2) and (7) taking into account that the boundary 
condition in Eq (3) 

( ) 0 ( )o Mu t u t  , the resulting system of nonlinear ODEs 

with the initial condition given as: 

    1 1 1 12

( , )
2

2
ji

j j j j j

udu x t
u u u u u

dt h h


        ,          

1(1)j M                                                                   (8)                                                                                   

subject to the initial condition 

1( ,0) ( )i iu x f x , 0 1,jx                                    (9)                                                                                                                                     

The system of ODEs in Eq (8) has an N differential equation. 
Hence by introducing 

the vector U i.e. 1 2[ ( ), ( ),....., ( )]T
MU u t u t u t  in Eq (8), 

we can rewrite it as 
matrix form as follow: 

       ( )
dU

H U
dt

                                                 (10)  
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      0 0( )jU x U     , 0 1jx       ,j=1(1)M      (11)                                          

where 0 0( )jU x U  initial condition and H is a nonlinear 

function of U with element is jh  which is given by: 

 1 2 1 1 1 1, ,...., . ( ) (2 )j M j j j j jh u u u t u u u u u           

                                                                                    (12) 

where  
2h


    and 

1

2h
   . 

As (Gowrrisanker S. and Natesan S.,2019 ) introduced, we 
consider the discretization of time domain [0, T] the 
equidistant mashes with uniform time step t  given 
as:    

0{ }n nD t t n t     ,  1(1)n N  ,   

     
T

t
N

                                                         (13) 

where N is the number of mesh elements int-direction. Then 
the resulting system of ODEs in Eq (10) can now be solved by 
using the fifth-order Runge-Kutta method. 

3.4. Stability Analysis 

In this section, the stability of the proposed numerical method 
is investigated by using Von-Neumann stability analysis. To 
do these we assumed the non-linear term uux 
of partial differential equation in Eq.(1) as linear by taking 
u    where    is constant. Then without losing generality, 

we obtain the linear system of ODEEs. Assume that  

max( )ju   in Eq (10). Now we can know to inquire 

about the eigenvalues of the N system of ODEs (8). To obtain 
this eigenvalue, as [17]--[20] takes, we assume that a trial 
solution and substituting it into Eq.(8). However, the trial 
solution must be taking into account the variation of ( , )u x t   

both x and t. This variation of the trial solution is assumed that 
as in [17], a product of a solution given by: 
                         ( , ) ( ) ( )u x t t x                         (14)                                                                       

Farther following a method proposed by Von Neumann, we 
assume that x depending ( )x  to be of a form: 

                           ( ) a j a
ik x ijhkx e e                     (15)                                                                          

where 1i    , ak a   and 1,2,3,.....,a M  , K. K 

is a Fourier number or amplification factor. Now substituting 
Eqs (14) and (15) into Eq (8) we obtain: 
     

   ( 1) ( 1) ( 1) ( 1)
2

2
2

a a a a a aijhk ik h j ik hj ik h j ik h j ik h jd
e e e e e e

dx h h

     
                

=

  

 {cos( ) sin( )} {cos( ) sin( )}
2 a a a ahk i hk hk i hk
h


  

 

          =
2

2cos( ) 2} sin( )a a

i
hk hk

h h

 

 

  
 

         (16) 

 Thus we can write Eq (16) in terms of eigenvalue   such 
that: 

                         a

d

dt


                                              (17)                                                                                      

Therefore from Eqs (16) and (17), we obtain: 

2
2cos( ) 2} sin( )a a a

i
hk hk

h h

 
  

 
   

 
 

2
{2cos( ) 2} sin( )a a a

i
hk hk

h h

 
                          (18)  

  where a = 1,2,3,……………M . Hence from Eq (18) we 
obtain the required egienvalue .All egienvalue has negative 

real part (i.e Rel( a )<1). Therefore the obtained 

system of equation in Eq (11) is stable. 
 
Theorem 1:- The obtained system of the equation is 
stable such that    of the system matrix say matrix ’A’ 

satisfy Re ( ) 0al    . 

proof: Assuming that the system matrix is diagonal. Let 
”P” be invertible 

matrix. Then,   1A p p    where   are the 

eigenvalues of matrix A and  

 =

1

2

1

0 0

0 0

0 0 N





 

 
 
 
 
 
 

for all n=1,2,3,…N-1.   Then 

we have: 

     1

1 1

1 1

! !

nAt n n n

n n

e A t p p t
n n


 



 

    

. 1

1

1

!
n n

n

p p t
n








   1 1

1

1

!
n n

n

p t p pe p
n




 



   

     

1

2 1

1

0 0

0 0

0 0 N

p p











 
 
 
 
 
 

                           (20)                                                                                 
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theorem Hence 0te   if and only if the real part of the 
eigenvalue of ”A” is less than zero ( Re ( ) 0al   ).  

This follows that 0te   if and only if Re ( ) 0al   .  

Therefore the obtained system of the equation is stable. 

3.5. Criteria for Investigating the Accuracy of the Method 

In this section, we investigate the accuracy of the present 
method. To show the accuracy of the present method for some 
values of the perturbation parameter ”   ”, we report the 

maximum point-wise absolute error ,N tE

 and the 

corresponding order of convergence ,N tP
  The order of 

convergence and the maximum pointwise absolute error is 
calculated Gowrisankae and Natesan [15]

   ,

1

( , ) ( , ) ,maxN t

i M i M
i N

E U x t u x t




 

 
        

(21) 

   
,

,
2 ,

log 2
N t

N t
N t

E
P

E











 
 
 

                                          (22) 

Here, ( , )i MU x t  and ( , )i Mu x t  are the exact and 

approximation solutions of Eqs. (1), (2), and (3), respectively. 

3.6 Numerical Experiments 

To test the validity of the proposed method, we have 
considered the following model problem. 
Example1: Consider the one dimensional perturbed Burger 

equation considered by Gowrisankae and Natesan [15] 

 )( , ) ( , )t xx xxu uu x t u x t  , 0 1x  , 0 t T  ,           

with initial condition 

( ,0) sin( )i iu x x , 0 1ix   

and boundary conditions           

(0, ) (1, ) 0u t u t  , 0 t T  , 

The unique exact solution of the above IBVP Burger’s 

equation is given by :  

2

2

1

0
1

sin( )

( , ) 2
cos( )

t
p

p
i

t
p

p

e pA p x

U x t
A e pA p x




























 

 

0

11 ( )
2

0

x

f y dy

o

A e dx


 
 

  
 

   and 

0

11 ( )
2

cos( )

x

f y dy

n

o

A e p x dx




  
  

  
    

  

The numerical results are presented in tables in terms 

of ,N tE

  and ,N tp
 , measuring the accuracy of the present 

method for different values of perturbation parameter   . 
                                                            

Table 1. Maximum Pointwise absolute error ,N tE

  and rate of convergence  ,N tp
 example1 on equidistribution mesh. 

Our Method 

N
t 

 64
1
20

  128
1
40

 256
1

80

 512
1

160

 

     
,

,

N t

N t
E

P






 
 

    

010   4.8019E-05 

0.3566 

1.8803E-5 

1.8803 

8.3113 E-06 

0.0900 

 9.00 E-06 

0.0455 

210
 5.9723E-02 

0.0375 

3.0160 E-02 

0.0191 

1.5018 E-02 

0.0095 

 7.4764E-03 

0.0048 
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410

 1.0700E-02 

0.0061 

1.4224 E-02 

 

0.0082 

1.2081 E-02 

 

0.0070 

 7.2973E-03 

 

0.0042 

 
610

 1.2349E-04 

-0.0103 

2.5231E-04. 

-0.000774 

4.9521 E-04 

0.000178 

 9.0564E-04 

0.000051 

By Gowrisankae,S. and Natesan,S. ,2019 in [15] 

010  7.5816E-03 

0.9903 

3.8165E-03 

0.9877 

1.924E-03 

0.9875 

 

 9.7064E-04 

__ 

210
 1.1303E-01 

0.8700  

6.1846E-01 

1.1644 

2.7592E-02 

0.9714 

 1.4072E-02 

 

__ 

410
 2.5946E-01 

0.8477 

1.4418E-01 

1.0752 

6.8426E-02 

1.0753 

 3.2474E-02 

__ 

610
 2.7194E-01 

0.7955 

1.5667E-01 

1.0432 

6.9863E-02 

1.0432 

3:2474E-02 

        __ 

 

Table 2. Maximum Pointwise absolute error ,N tE

  and rate of convergence  ,N tp
 example1 on a uniform mesh 

Our Method 

N
t 

 64
1
20

  128
1
40

 256
1

80

 512
1

160

 

     
,

,

N t

N t
E

P






 
 

    

010   4.8019E-05 

0.3566 

1.8803E-5 

1.8803 

8.3113 E-06 

0.0900 

 9.00 E-06 

0.0455 

210
 5.9723E-02 

0.0375 

3.0160 E-02 

0.0191 

1.5018 E-02 

0.0095 

 7.4764E-03 

0.0048 

410
 1.0700E-02 

0.0061 

1.4224 E-02 

 

0.0082 

1.2081 E-02 

 

0.0070 

 7.2973  E-03 

 

0.0042 
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610

 1.2349E-04 

-0.0103 

2.5231E-04. 

-0.000774 

4.9521 E-04 

0.000178 

 9.0564  E-04 

0.000051 

By Gowrisankae,S. and Natesan,S. ,2019 in [15] 

010  7.5816E-03 

0.9903 

3.7677 E-03 

0.9935 

1.8924 E-03 

0.9966  

 9.4836 E-04 

__ 

210
 1.0753 E-01 

0.4895   

7.6588 E-02 

0.5937 

0.5937 E-02 

0.7621 

 0.7621 E-02 

 

__ 

410
 9.7343 E-02 

0.2188 

8.3641 E-02 

0.2054 

7.2542 E-02 

0.1226 

 6.6633E-02 

__ 

610
 9.5552 E-02 

0.2634 

7.9607 E-02 

0.305 

6.4438 E-02 

0.3174 

0.3174 E-02 

        __ 

 

Table 3. Maximum Pointwise absolute error ,N tE

  and rate of convergence ,N tp
 example1 on Shishkin mesh 

Our Method 

N
t 

 64
1
20

  128
1
40

 256
1

80

 512
1

160

 

     
,

,

N t

N t
E

P






 
 

    

010   1.2041E-04 

0.3555 

4.7393 E-5 

0.1778 

2.0979 E-05 

0.088 

 2.0078 E-05 

0.0456 

210
 1.1647E-01 

0.0307 

6.8416  E-02 

0.0180 

3.5531 E-02 

0.0094 

 7.4764E-03 

0.0048 

410
 5.1305E-03 

0.000999 

9.35354  E-03 

 

0.0022 

1.3651  E-03 

0.0032 

 1.3621 E-03 

 

0.00162 

610
 4.1915E-05 

-0.0256 

1.0490 E-04. 

-0.0024 

2.1141  E-04 

-0.000251 

 2.1180 E-04 

-0.000021 

By Gowrisankae,S. and Natesan,S. ,2019 in [15] 
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010  7.4679E-03 

0.9870 

3.7677E-03 

0.9935 

1.8924 E-03 

0.9966 

 

 9.4836E-04 

__ 

210
 9.5492E-02 

0.7750  

5.580 4E-0 

0.7502 

3.2269E-02 

0.8513 

 1.7885 E-02 

 

__ 

410
 6.4274E-01 

0.3248 

5.1317E-01 

0.5713 

3.4536 E-01 

0.7450 

 2.0605 E-01 

__ 

610
 8.0790E-01 

-0.1346 

8.8692 E-01 

0.9873 

8.2825 E-01 

0.2547 

6:9417E-01 

        __ 

 

Figure 1: Solution profile of Example 1on  uniform mesh with ε=2-2
, M = 36  & Δt=0.1 

 

Figure 2:Solution profile of Example 1on  shrinking mesh with ε=2
-6 ,

M = 36  & Δt=0.1 
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Figure 3: Graphs for the numerical solution of Example 1 on uniform mesh with  ε=10--2, M = 64  & Δt=0.1 to show the 

point where the maximum pointwise error are obtained 

 

Figure 4: Graphs of the numerical solution and Grid distribution for Example 1 uniform mesh with ε=10-2, M = 64  & 
Δt=0.1 to show the point where the solution is obtained 

 

Figure 5:Graphs of numerical solution and Grid distribution for Example 1 shrinking mesh with ε=10-02, M = 36  & 
Δt=0.1 to show the point where the solution is obtained 
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IV. . DISCUSSION 

As depicted in Tables 1, 2, and 3 the present method can 
generate a convergent numerical solution for   and for 
different mesh refinement at which the method presented by 
Gowrisankae and Natesan, 2019 in [15] fails to produce the 
convergent solution. To compare the results obtained by the 
present method with the already existing methods, we 
produced maximum point-wise errors and the corresponding 
order of convergence applying on the uniform mesh in the 
spatial direction in Table 2, and Shishkin mesh results are 
given in Table 3. From the results given in both Tables, one 
can observe that when  both uniform and Shishkin 
meshes give high convergence than the already existing 
method. As the value of the perturbation parameter decrease, 
the accuracy of the numerical result increase. Further, the 
numerical results present in Tables 2 and 3 show that the 
accuracy of the method is enhanced for different values of 
time-step and step length h for both uniform and Shishkin 
meshes in the spatial direction. The convergence of the 
present method is also depending on the perturbation 
parameter. The parameter-uniform convergence of the 
scheme is validated with numerical results. To Shaw, the 
physical behavior of the given problem, the surfaces, and plot 
graphs of approximating solution are given in Figures 1, 3, 
and 4, for  ε=10-02, M = 64  & Δt=0.1. Finger 4 shows that the 
sequence of the line that the method is used to give the better 
solution through line segment for the uniform mesh. It means 
that the distribution of the solution on the grid pint along the 
line segment. For parameter ε Comparison among Table 
1-Table 3 shows that a more accurate result is generated by 
the present method. Again the presented in Figures 1,  3, and 4  
shows that the approximate solution obtained by the present 
method for uniform mesh is in good agreement with the exact 
solution. The simulations presented in Figures 2 and 5 shows 
that the approximate solution obtained by the present method 
for shrinking mesh is also in good agreement with the exact 
solution. 

V. CONCLUSION 

In this paper, the ‘numerical method of the line’ is used to 

solve one-dimensional singularly perturbed Burger’s 

equation. First, we discretizing the derivative involving the 
special variable by using the central difference method to 
obtain the system of ODE. Then we solve the resulting initial 
value problem by using the Runge-Kutta method and the 
stability of the method is also established. 

To validate the applicability of the method, one model 
example is considered and solved by varying the value of 
perturbation parameter ε, time-step k, and step-length h. As 
can be seen from the numerical results presented in tables and 
graphs, the present method is superior to the method 
developed by Gowrisankae and Natesan, 2019 in [15]and 
approximates the exact solution very well. In a nutshell, the 
present method is conceptually simple, easy to use, and 
adaptable for computer implementation for solving 
one-dimensional singularly perturbed Burger’s equation. 
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