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Numerical Method of the Line for Solving One

Dimensional Initial-

Perturbed Burger Equation

Kedir Aliyi,

Abstract: I n this Research Method of Lineisused to find the
approximation solution of one dimensional singularly perturbed
Burger equation given with initial and boundary conditions. First,
the given solution domain is discretized and the derivative
involving the spatial variable X'is replaced into the functional
values at each grid points by using the central finite difference
method. Then, theresulting first-order linear ordinary differential
equation is solved by the fifth-order Runge-Kutta method. To
validate the applicability of the proposed method, one model
example is considered and solved for different values of the
perturbation parameter ‘ E ’ and mesh sizes in the direction of the
temporal variable, t. Numerical results are presented in tablesin

. . . N,At
terms of Maximum point-wise error, Eg and rate of

convergence, F’SN’At . The stability of this new class of Numerical

method is also investigated by using Von Neumann stability
analysis techniques. The numerical results presented in tables
and graphs confirm that the approximate solution is in good
agreement with the exact solution.

Keywords. Burger equation, perturbation parameter,
Method of line, Von Neumann stability analysis.

. INTRODUCTION

Numerical anadysis is a subject that involves

computational methods for studying and solving
mathematical problems. It is a branch of mathematics and
computer science that creates, analyzes, and implements
algorithms for solving mathematical problems numerically
[2]. Also, it’s widely used by scientists and engineersto solve
some problems. Such problems may be formulated in terms of
an agebraic equation, transcendental equations, ordinary
differential equations, and partial differential equations [1],
[3]. Numerical analysisis aso concerned with the theoretical
foundation of numerical agorithms for the solution of
problems arising in scientific applications [3].
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Applications of PDEs can be found in physics, engineering,
mathematics, and finance [1], [3], [16]. For instance, include
modeling mechanical vibration, heat, sound vibration,
elagticity, and fluid dynamics [16].Although PDEs have a
wide range of applications to real-world problems in science
and engineering, the mgjority of PDES do not have analytical
solutions. It is, therefore, important to be able to obtain an
accurate solution numerically. Many computational methods
have been developed and implemented to successfully
approximate solutions for mathematical modeling in the
application of PDEs. To make use of mathematical models, it
is necessary to have solutions to the model eguations.
Generaly, this requires numerical methods because of the
complexity and number of equations [4] Scientistsinthefield
of computational mathematics are trying to develop more
accurate numerical methods by using computers for further
application [16]. One of those numerical methodsis amethod
of line. Burgers’ equation, which belongs to the class of
Navier—Stokes equation, is a fundamental partial differential
equation from the model of fluid mechanics analyses [4, 15].
It was first introduced by Bateman [6]. In 1948, Burgers
(1939, 1948) introduced one-dimensional PDES, to capture
some features of turbulent fluid in a channel caused by the
interaction of the opposite effects of convection and diffusion;
it arisesin the theory of shock waves, in turbulence problems,
and continuous stochastic processes [12].

The structure of Burgers’ equation is roughly similar to
that of Navier-Stokes equations due to the presence of the
non-linear convection term and the occurrence of the
diffusion term with viscosity coefficient. So this equation can
be considered as a simplified form of the Navier-Stokes
equations[7], [9].

The study of the general properties of the Burgers’
equation has attracted the attention of the scientific
community dueto itsapplicationsin variousfields such asgas
dynamics, heat conduction, elasticity, etc [7].

The study of the solution of Burgers’ equation has been
carried out for the last half-century and still, it isan active area
of research to develop a better numerical scheme to
approximate its solution. Due to the wide range of the
application of the one-dimensional Burgers equation, several
numerical methods have been developed. Even though many
numerical methods were applied to solve these types of
equations. Accordingly, more efficient and simpler numerical
methods are required to solve the Burgers equation. In the
literature review, many researchers have used various
methods to seek the numerical solutions of 1D Burgers’
equation [6]--[10].
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Similarly, the coupled and 2D Burgers’ equations are
solved by many researcherswith different numerical methods.
Abazaria and Borhanifar presented the solution of coupled
and 2D Burgers’ equations by using the differential transform
method (DTM).DTM is a semi-numerical—analytic technique
that formalizesthe Taylor seriesdifferently. The Taylor series
method is computationally time-consuming for large orders
and high contaminated round-off error and truncation error.
Asaithambi [14] presented a Numerical solution to the
Burgers’ equation by using automatic differentiation.
Kutluay, Esen, and Dag in [20] are presented a Numerical
solution of the Burgers’ equation by the least-squares
quadratic B-spline finite element method. Khater [13]
proposed the Chebyshev spectral collocation method for
solving the coupled Burgers’ equations. With pseudo-spectral
methods care must be taken with the round-off error issue
when higher derivatives or a large several points N is
involved. For instance, the utilization of Chebyshev
collocation methods incurs a rounding-off error of order
(N2ke), where k is the order of the PDE and e is the machine
zero. This can ruin the computed solution even if k and N are
not large. Gowrisankar, S., and Natesan, S. in[15], present the
numerical solution of singularly perturbed initial-boundary
Burgers’ equation by using an efficient robust numerical
method. They provide an e-uniformly convergent numerical
method for the singularly perturbed Burger. They obtain
uniform  convergence concerning the perturbation
parameter & . Even though the method is capable of
approximating Burger’s equation, they failed to solve a
relatively small perturbation parameter & . However, till, the
accuracy of the method needs attention; because the treatment
of the method used to solve the Burger equation is not trivial
distribution. Even though the accuracy of the aforementioned
methods needs attention, sometimes they require large
memory or long computational time besides costing. So the
treatments of this method present severe difficulties that have
to be addressed to ensure the accuracy of the solution.

To this end, this paper aims to develop a numerical
method that is capable of solving singularly perturbed
initial-boundary Burger equation for any & and
approximate the exact solution. The convergence has been

showninthesenseof L, norm so that the local behavior of

the solution is captured exactly. The stability of the present
method is also investigated by using Von Neumann stability
analysis techniques.

[I. PRELIMINARIES

2.1 Singularly Perturbed Problem

A singular perturbation problem is one for which the
perturbed problem is qualitatively different from the
unperturbed problem. One typically obtains an asymptotic,
but possibly divergent, expansion of the solution, which
depends singularly on the parameter € . Although singular
perturbation problems may appear typical, they
are the most interesting problems to study because they allow
one to understand qualitatively new phenomena.

The solutions of singular perturbation problemsinvolving
differential equations often depend on several widely
different length of time scales. Such problems can be divided
into two broad classes: layer problems, treated using the
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method of matched asymptotic expansions (MMAE); and
multiple-scale problems, treated by the method of multiple
scales (MMS) [15]. Brandt’s boundary layer theory for the
high Reynolds flow of aviscous fluid over asolid body is an
example of a boundary layer problem and the semi-classical
limit of quantum mechanicsis an example of a multiple-scale
problem [15]. An example of the perturbation problem is
singularly  perturbed  Burgers’ initial-boundary-value
problem. Under suitable continuity and compatibility
conditions on the data, the IBVP in EQs (1) has a unique
solution, [15].

They used Cole-Hopf transformation which transforms
the Burgers’ equation to
alinear diffusion equation and this diffusion equation can be
solved exactly for
an arbitrary initial condition with regularity assumption onthe
initial and boundary
conditions. In addition to these, they can assure that boundary

layer occursin the solutionwhen & — O at the boundary of
thedomain x = 1; the solution varies rapidly, while away from
the layer the solution changes slowly, and smoothly. The
accuracy of the method is decreased.

Beckett, B, and Mackenzie have presented a numerical
solution  for  one-dimensional convection-  and
reaction-diffusion problems using equidistribution of the
singular component of the solution in [17]. Moreover,
space-time parabolic reaction-diffusion and
convection-diffusion evolution problems are analyzed by
Gowrisankar and Natesan in [18], [19].

2.2. TheNumerical Method of Lines

The method of lines (MOL) is a convenient procedure for
solving time-dependent PDEs, which proceeds in two
separate steps. Approximation of the spatial derivativesusing
finite differences, finite elements, or finite volume methods
(or any other techniques), and time integration of the resulting
semi-discrete (discrete in space, but continuous in time)
ODEs[11].

The method of lines (MOL, NMOL) [5],[22],[23] is a
technique for solving partial differential equations (PDES) in
which al but one dimension is discretized [22]. MOL allows
standard, general-purpose methods and software, developed
for the numerical integration of ODEs and DAEsS, to be used
[11]. Many integration routines have been developed over the
years in many different programming languages and some
have been published as open-source resources [24]. The
method of lines most often refers to the construction or
analysis of numerical methods for partia differential
equations that proceeds by first discretizing the spatial
derivatives only and leaving the time variable continuous.
This leads to a system of ordinary differential eguations to
which anumerical method for initial value ordinary equations
can be applied. The method of linesin this context dates back
to at least the early 1960s [11], [25]. Many papers discussing
the accuracy and stability of the method of lines for various
types of partial differential eguations have appeared in

[26],[27].
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MOL requiresthat the PDE problemiswell-posed asan initial
value (Cauchy) the problemin at least one dimension because
ODE and DAE integrators are initial value problem (IVP)
solvers[11], [19].

Thus it cannot be used directly on purely eliptic partial
differential equations, such as Laplace’s equation. However,
MOL has been used to solve Laplace’s equation by using the
method of false transients [19]. In this method, a time
derivative of the dependent variable is added to Laplace’s
equation. Finite differences are then used to approximete the
spatial derivatives and the resulting system of equations is
solved by MOL. It isalso possibleto solve elliptical problems
by a semi-analytical method of lines[29],[30]. In this method,
the discretization process results in a set of ODE’s that are
solved by exploiting properties of the associated exponential
matrix. Recently, to overcome the stability issues associated
with the method of false transients, a perturbation approach
was proposed which was found to be more robust than the
standard method of false transientsfor awide range of elliptic
PDEs|[31]

I11. DESCRIPTION OF THE METHOD, RESULTS, AND

DISCUSSION

3.1 Description of the M ethod

Consider the following singularly perturbed Burgers’
initial-boundary-value problem (IBVP) considered in [15]:

2

(%+u%§j(x,t)=g%(x,t),

(x,t) € (0,9 =< (0, T] 1)

subject to initial and boundary conditions:
u(x,0)=f(x), 0<x<1 2
u(o,t)=u(t)=0, O<t<T ()

Here, where 0 < ¢ << 1 is a smal perturbation
parameter f,(X), is continuous and differentiable functions.

The computational domain [&,b] [0, T] is partitioned

as 0= <X <o <X <Xy < <Xy =1
O=t, <t <..<t <X, <..<X =T @
h=x,-x ad At=t,_, —t, whee h and

At are mesh-size of [0,1] and [0, T]

3.2. Discretizing Partial Derivative involving with Spatial
Variable

Recalling that the one-dimensional singularly perturbed
Burgers’ initial-boundary value problem (IBVP) given in Eq
(1), we aim to approximate the partial derivative of u(xt)
involving spatial variable. The given non-linear PDE in Eq(1)
is reduced into the system of no linear ODEs by using the
method of line. The idea of the method of the line is
discretizing partial derivative involving spatial variable by
using central finite difference method and the remaining part
of variable is discretized.
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Now the discretizing of partial derivative involving a
gpatial variable by using central difference method is:

@ uj+1,n - l"lj—l,n

= : ©)
OX 2h
o%u _ Y~ 20, +U; ©)
ox h?
where j = 1,2,3,...,M in direction of special variable.
Substituting Egs,(5) and (6)
into singularly perturbation Burger’s equation given in Eq (1),
we obtain the system

of the non-linear differential equation of the form:

ou u, —2u +uU. U, —Uu._
—(x,)=¢| H—] 2= |y | 2=
ot 2h

h2
)

wherein EQ.(7). Hence the given equation is further
discretized in space for afirst-order and second-order spatial
derivative and then obtains a semi discretized scheme
corresponding to Burger’s equation. In this discretization, we
consider redistributing grid points for spatial direction. The
distributive of mesh point in the domain, outside and inside of
boundary layer region almost equal for both spatial and
temporal variables.

3.3. Results and Discussion

ou
That method of the line is used to approximate &(X, t)

o’u _ .
and rv (X,t) by using the central difference method at N
X

grid point in the gspatiad direction in,[0;1]. Then
from Egs (2) and (7) taking into account that the boundary
condition in Eq (©))

u,(t) =0=u,, (t), the resulting system of nonlinear ODEs
with the initial condition given as:

du(x,t) ¢ U
T=F(uj+1—2uj +uj_1)—2—;](uj+l—uj_1) :
j=1OM ®
subject to the initial condition

u(x,0) = f,(x),0<x <1, 9)

The system of ODEs in Eq (8) has an N differential equation.

Hence by introducing
the vector U i.e. U =[u(t),u,(t),.....,u,, ()] inEq (8),
we can rewrite it as
matrix form as follow:
du
—~ =H(U (10)
dt 2
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Uos(x)=U, ,0<x <1 j=()M (12)

where U, (X;) =U,, initial condition and H is a nonlinear

function of U with element is hj which is given by:

h, (U Uy, e
(12)

where « —F and =

As (Gowrrisanker S. and Natesan S.,2019 ) introduced, we
consider the discretization of time domain [0, T] the
equidistant mashes with uniform time step At given
as:

Dn :{tn

—t,+nAt} , n=1DN ,

At=T
N

where N is the number of mesh elements int-direction. Then
theresulting system of ODEsin Eq (10) can now be solved by
using the fifth-order Runge-Kutta method.

3.4. Stability Analysis

(13

In this section, the stability of the proposed numerical method
is investigated by using Von-Neumann stability analysis. To
do these we assumed the non-linear term uux
of partial differential equation in EQ.(1) as linear by taking
U=y where y isconstant. Then without |osing generality,
we obtain the linear system of ODEEs. Assume that
y=max(u;) in Eq (10). Now we can know to inquire
about the eigenvalues of the N system of ODEs (8). To abtain
this eigenvalue, as [17]--[20] takes, we assume that a trial
solution and substituting it into Eq.(8). However, the trial
solution must be taking into account the variation of U(X,t)

both x and t. Thisvariation of thetrial solution isassumed that
asin[17], aproduct of asolution given by:

u(xt) = o(t)$(x)

Farther following a method proposed by Von Neumann, we
assume that x depending ¢(X) to be of aform:

p(x) =€ =

where i =+-1 ,k, =ar and a=123,....,M ,K.K

isaFourier number or amplification factor. Now substituting
Eqgs (14) and (15) into Eq (8) we obtain:

(14)

(15

dﬁf’éjhka &P {ékah i) _pghfi | d kahu—l)}_@ {ékah(ju)_eikah(i—l)}
dx h? 2

G{%[{Om(?*.)+f=il(?*)}+{mﬂ(ﬁ.)ffﬁl(ﬁ)}*2{m(ﬁ.)*fsill(ﬂ)}]*
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uM—l't) = (0[ _ﬂuj)uj+1 —(20! _ﬂuj—l)uj +auj—1

%[{ cos(hk, ) +i sin(hk,)} +{ cos(hk,) =i sin(hk,)}]

{h {ZCOS(hka) 2}— sm(hka)} (16)

Thus we can write Eq (16) in terms of eigenvalue A such
that:

de
2 _2 17
at 2P 17
Therefore from Eqgs (16) and (17), we obtain:
A0 = g{ {ZCos(hka) 2}— sm(hk )}
£ ly .
= zt2cos(hk,) -2 ——-sin(hk,) (18)

where a = 1,2,3,...............M . Hence from Eq (18) we
obtain the required egienvalue .All egienvalue has negative

real part (i.e Rel( A, )<1). Therefore the obtained
system of equation in Eq (11) is stable.

Theorem 1:- The obtained system of the equation is
stable such that 4 of the system matrix say matrix "A’
satisfy Real (1) <0 .

proof: Assuming that the system matrix is diagonal. Let

”p” be invertible
matrix. Then, A=pip* where 1 are the
eigenvalues of matrix A and
2 0 - 0
0 4,
A= . . foraln=1,2,3,..N-1. Then
0 - 0 Ay,
we have:
At - 1 nn . - 1 ~1\"4n
e _nZ:;‘ﬁAt _éa(p/lp )t
OO 1 n.~—-Lln n -1
.=Zﬁp;t pt" = pz (/H )pt=pe'p
n=1 "1
A4 O 0
0 A4 - O )
N L (20
0 - 0 Ay,
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theorem Hence €' — 0 if and only if the real part of the
eigenvalue of ”A” is less than zero ( Real (1) < 0).

This follows that |&”'| — O if and only i Real (4) — 0.
Therefore the obtained system of the equation is stable.
3.5. Criteriafor Investigating the Accur acy of the M ethod

In this section, we investigate the accuracy of the present
method. To show the accuracy of the present method for some

values of the perturbation parameter ” A ”, we report the
maximum point-wise absolute error EgN‘At and the

corresponding order of convergence PN The order of
convergence and the maximum pointwise absolute error is

calculated Gowrisankae and Natesan [15]
EgN,At = maX‘U ()Q’tM)_u()Q’tM )‘! (21)
I<i<N EN’At
P"* log 2[ Eng,m j (22)

Here, U(X,t,,) and u(x,t,) ae the exact and
approximation solutions of Egs. (1), (2), and (3), respectively.

3.6 Numerical Experiments

To test the validity of the proposed method, we have
considered the following model problem.
Examplel: Consider the one dimensional perturbed Burger

equation considered by Gowrisankae and Natesan [ 15]
(U +uu )(xt) =eu (xt)), 0<x<1,0<t<T,

with initial condition
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u(x,0)=sin(zx), 0<x <1

and boundary conditions

u(0,t) =u(,t)=0, 0<t<T,

The unique exact solution of the above IBVP Burger’s

equationisgiven by :

i et pA, sin(prrx)
U(x,t)=2 pL
()g ) “r oo _ %t
A+ e pA cos( prX)
p-1
[ oy
A)=J- eza! X and
1 llff(y)dy
A :j e’ cos(pzX) (dx

The numerical results are presented in tables in terms
of EM* and p]"**', measuring the accuracy of the present
method for different values of perturbation parameter & .

Table 1. Maximum Pointwise absoluteerror E*** and rate of convergence p**' examplel on equidistribution mesh.

Our Method

N 64
Vat ™ /1
20
ed gNA
¢ %N,At !

?
1
40

10° 4.8019E-05 1.8803E-5
0.3566 1.8803

1072 5.9723E-02 3.0160 E-02
0.0375 0.0191
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? 7
1 1
80 160

8.3113 E-06 9.00 E-06

0.0900 0.0455

1.5018 E-02 7.4764E-03

0.0095 0.0048
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10* 1.0700E-02 1.4224 E-02 1.2081 E-02 7.2973E-03
0.0061
0.0082 0.0070 0.0042
10°° 1.2349E-04 2.5231E-04. 4.9521 E-04 9.0564E-04
-0.0103 -0.000774 0.000178 0.000051

By Gowrisankae,S. and Natesan,S. ,2019 in [15]

10° 7.5816E-03 3.8165E-03 1.924E-03 9.7064E-04
0.9903 0.9877 0.9875 _

102 1.1303E-01 6.1846E-01 2.7592E-02 1.4072E-02
0.8700 1.1644 0.9714

10 2.5946E-01 1.4418E-01 6.8426E-02 3.2474E-02
0.8477 1.0752 1.0753 _

10°° 2.7194E-01 1.5667E-01 6.9863E-02 3:2474E-02
0.7955 1.0432 1.0432 _

Table 2. Maximum Pointwise absoluteerror E'"** and rate of convergence p)"* examplel on a uniform mesh

Our Method
|\y N 64 128 256 512
At 1 1 1
20 40 80 160
N,At
ey = / v
pNAty
100 4.8019E-05 1.8803E-5 8.3113 E-06 9.00 E-06
0.3566 1.8803 0.0900 0.0455
10—2 5.9723E-02 3.0160 E-02 1.5018 E-02 7.4764E-03
0.0375 0.0191 0.0095 0.0048
10—4 1.0700E-02 1.4224 E-02 1.2081 E-02 7.2973 E-03
0.0061
0.0082 0.0070 0.0042
Retrieval Nun‘bgr: 100.1/ijam.B1103101121 Published By:
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10°

1.2349E-04

-0.0103

2.5231E-04.

-0.000774

By Gowrisankae,S. and Natesan,S. ,2019 in [15]

10°

1072

7.5816E-03

0.9903

1.0753 E-01

0.4895

9.7343 E-02

0.2188

9.5552 E-02

0.2634

3.7677 E-03

0.9935

7.6588 E-02

0.5937

8.3641 E-02

0.2054

7.9607 E-02

0.305
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4.9521 E-04

0.000178

1.8924 E-03

0.9966

0.5937 E-02

0.7621

7.2542 E-02

0.1226

6.4438 E-02

0.3174

9.0564 E-04

0.000051

9.4836 E-04

0.7621 E-02

6.6633E-02

0.3174 E-02

Table 3. Maximum Pointwise absoluteerror E"** and rate of convergence p** examplel on Shishkin mesh

Our Method

I\yAt_)
ed

10°

10°°

10

10°

64
1
20

EN,At
¢ %N,At !

1.2041E-04

0.3555

1.1647E-01
0.0307
5.1305E-03

0.000999

4.1915E-05

-0.0256

?
1
40

4.7393 E-5

0.1778

6.8416 E-02
0.0180

9.35354 E-03

0.0022
1.0490 E-04.

-0.0024

By Gowrisankae,S. and Natesan,S. ,2019 in [15]
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10

256
1

80

2.0979 E-05

0.088

3.5531 E-02
0.0094
1.3651 E-03

0.0032

21141 E-04

-0.000251
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512

160

2.0078 E-05

0.0456

7.4764E-03
0.0048

1.3621 E-03

0.00162

2.1180 E-04

-0.000021
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10° 7.4679E-03 3.7677E-03 1.8924 E-03 9.4836E-04
0.9870 0.9935 0.9966 _

102 9.5492E-02 5.580 4E-0 3.2269E-02 1.7885 E-02
0.7750 0.7502 0.8513

10 6.4274E-01 5.1317E-01 3.4536 E-01 2.0605 E-01
0.3248 0.5713 0.7450 _

10°° 8.0790E-01 8.8692 E-01 8.2825 E-01 6:9417E-01
-0.1346 0.9873 0.2547
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Figure 1: Solution profile of Example 1on uniform mesh with £=22 M =36 & At=0.1
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Figure3: Graphsfor the numerical solution of Example 1 on uniform mesh with £=10-2 M = 64 & At=0.1 to show the
point wher e the maximum pointwise error are obtained
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Figure 4: Graphs of the numerical solution and Grid distribution for Example 1 uniform mesh with e=10*M =64 &
At=0.1 to show the point where the solution is obtained
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Figure 5:Graphs of numerical solution and Grid distribution for Example 1 shrinking mesh with e=10% M =36 &
At=0.1 to show the point where the solution is obtained
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IV..DISCUSSION

Asdepicted in Tables 1, 2, and 3 the present method can
generate a convergent numerical solution for & and for
different mesh refinement at which the method presented by
Gowrisankae and Natesan, 2019 in [15] fails to produce the
convergent solution. To compare the results obtained by the
present method with the aready existing methods, we
produced maximum point-wise errors and the corresponding
order of convergence applying on the uniform mesh in the
spatial direction in Table 2, and Shishkin mesh results are
given in Table 3. From the results given in both Tables, one
can observe that when = = 70~%* both uniform and Shishkin
meshes give high convergence than the already existing
method. As the value of the perturbation parameter decrease,
the accuracy of the numerical result increase. Further, the
numerical results present in Tables 2 and 3 show that the
accuracy of the method is enhanced for different values of
time-step and step length h for both uniform and Shishkin
meshes in the spatial direction. The convergence of the
present method is also depending on the perturbation
parameter. The parameter-uniform convergence of the
scheme is validated with numerical results. To Shaw, the
physical behavior of the given problem, the surfaces, and plot
graphs of approximating solution are given in Figures 1, 3,
and 4, for e=10%, M =64 & At=0.1. Finger 4 shows that the
sequence of the line that the method is used to give the better
solution through line segment for the uniform mesh. It means
that the distribution of the solution on the grid pint along the

line segment. For parameter € Comparison among Table

1-Table 3 shows that a more accurate result is generated by
the present method- Againthe presented in Figures 1, 3, and 4

shows that the approximate solution obtained by the present
method for uniform mesh isin good agreement with the exact
solution. The simulations presented in Figures 2 and 5 shows
that the approximate solution obtained by the present method
for shrinking mesh is also in good agreement with the exact
solution.

V. CONCLUSION

In this paper, the ‘numerical method of the line” is used to
solve one-dimensional singularly perturbed Burger’s
equation. First, we discretizing the derivative involving the
specia variable by using the central difference method to
obtain the system of ODE. Then we solve the resulting initial
value problem by using the Runge-Kutta method and the
stability of the method is also established.

To validate the applicability of the method, one model
example is considered and solved by varying the value of
perturbation parameter ¢, time-step k, and step-length h. As
can be seen from the numerical results presented in tables and
graphs, the present method is superior to the method
developed by Gowrisankae and Natesan, 2019 in [15]and
approximates the exact solution very well. In a nutshell, the
present method is conceptually simple, easy to use, and
adaptable for computer implementation for solving
one-dimensional singularly perturbed Burger’s equation.
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