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 
Abstract: The triple product rule, also known as the cyclic 

chain rule, cyclic relation, cyclical rule or Euler's chain rule, 
relates the partial derivatives of three interdependent variables, 
and often finds application in thermodynamics. It is shown here 
that its derivation is wrong, and that this rule is not correct; hence, 
the Mayer's relation and the heat capacity ratio, which describe 
the difference between isobaric and isochoric heat capacities, are 
also untrue. Also, the relationship linking thermal expansion and 
isothermal compressibility is wrong. These results are confirmed 
by many experiments and by the previous theoretical findings of 
the author. 
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I. INTRODUCTION 

Functions theory contains the triple product rule, also 
known as the cyclical relation, cyclic chain rule or Euler's 
chain rule [14]. Suppose that there is a function f(x, y, z) = 0 
and this implicit equation can be solved for each of the 
variables x, y, and z as a differentiable function of the other 
two. The triple product rule is a formula that relates the partial 
derivatives of these functions, and is given by  
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.     (1) 

It is often used in thermodynamics, for example in the 
derivation of formulae for the difference between isobaric and 
isochoric heat capacities. It can be shown that there is a 
mistake in the derivation of the triple product rule, and that 
this rule is invalid. As a consequence, these thermodynamic 
formulae are also wrong. The results obtained are confirmed 
by many experimental results and previous outcomes reported 
by the author. 

II.  THEORY 

Let us perform a non-strict derivation of (1) [1,2,4]. 
The total differential of z is: 
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We suppose that z is constant, meaning that y = y(x) and  
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Introducing (3) into (2) at constant z, we obtain  
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Since  (4) must be true for all dx, rearranging its terms gives 
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From this, the triple product rule follows. 

 It can be seen that there are flaws in this derivation. For 
constant z, (2) becomes  
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and both terms on the right-hand side become zero. 
Furthermore, the differential dy in the second term on the 
right-hand side of  (2) is taken at constant x: dy = dy(x = 
const). Therefore, at constant z, we may introduce (3) into (2) 
only when dy in  (3) is also taken at constant x:  

    d ( const) d
zx

y
y x x

x

 
   

 
,     (7) 

which does not make sense. 

 Let us perform a stricter derivation of (1) [3,4]. We can 
write 
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and 
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Substituting (9) into (8), we obtain 
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The first term on the right-hand side equals dx, and hence  
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From this, the triple product rule can easily be obtained. 
 The flaw in this derivation is as follows. Equation (9) 
cannot be substituted into (8), since dy in (8) is taken at 
constant z: dy = dy(z = const), while dy in (9) is for varying z. 
 A specialist in mathematical physics sent me the following 
“mathematically rigorous proof” of (1):  
“Assume there are an open set Ω of (x, y, z) and three 
differentiable functions , , and  such that on Ω, the 

equation f(x, y, z) = 0 is equivalent to 

     , , , , ,x y z y x z z x y                  (12)  

Since all three equations hold on Ω, each one can be 

substituted in the others. So 

  , ,y x x y                        (13) 

and for a constant y, differentiation with respect to x gives 
 

       1 2 10 , , , , ,x x y x x y x y         ,            

 (14) 

where 1 and 2 are the derivatives with respect to the first 
and second argument of the  
function, respectively. Moreover 

  , ,x x z z  ,                       (15) 

so differentiation with respect to x gives  
 

    1 11 , , ,x z z x z     .                 (16) 

 

Combining  (14) and  (16) gives 
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and thus 
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In the usual (admittedly sometimes confusing) notation, this is 
(1).” Really, only two cases are possible on the left-hand side 

of (14):  
z
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 or  
y

y
x




. In the former one, the last 

term in (14) becomes zero. 
 One can show that this derivation is wrong. If on the 
left-hand side of (14) y is constant, then y is constant also on 
its right-hand side. Consequently, both terms on the 
right-hand side of (14) turn to zero. Furthermore, as the first 
term on the right-hand side of (14) is zero, one may not 
introduce (16) into (14) because the last factor in (16) is not 
zero. 

A. Discussion and Conclusions 

The triple product rule is used in the derivations of the 
Mayer's relation and the heat capacity ratio [5,6], which relate 
the isobaric and isochoric heat capacities CP and CV. 
According to the Mayer's relation, CP  CV > 0, and from the 
heat capacity ratio, CP/CV > 1. In [5,6], it was shown that the 
calculation of heat capacities with the Mayer's relation and the 
heat capacity ratio gives wrong results; for example, the 
isochoric heat capacity becomes greater than the isobaric one 
[5].  
In thermodynamics there is a relation that connects the 
thermal expansion coefficient and the isothermal 
compressibility [6]: 
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       
.               (19) 

It follows from (1). Let us check (19) for a gas. Let us heat a 
gas by the heat exchange (introducing a quantity of heat q 
into it). Its temperature and volume will then increase and the 
derivative on the left-hand side of (19) will be positive. The 
increase in temperature also causes an increase in pressure 
and therefore both derivatives on the right-hand side of (19) 
are positive. (The volume in the numerator of the derivative 
on the right-hand side of (19) increases because of heating.) 
This is a contradiction, since both sides of (19) must have 
equal signs. 
 Now let us heat the gas with compression. In this case, one 
can write the following equation: 

T V P

V T V

P P T

       
      

       
               (20) 

Here, on the left-hand side, the derivative is negative, the first 
derivative on the right-hand side is positive, and the second 
derivative is negative because the decrease in volume leads to 
the temperature increase. Here, it is necessary to note that in 
this derivative,  the volume in the numerator is the argument 
and the temperature in the denominator is the function [7]. 
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 The change in the volume causes the change in the 
temperature. Again, both sides of (20) have different signs, 
which is a clear contradiction. The authors of [8] performed 
an experimental check of (1) and (19), assuming that x = F 
was the tension of a rubber band, y = L was its length, and z = 
T was the absolute temperature, and found that the right-hand 
side of (1) was equal to 0.88. In [6], an analysis of their work 
was given and a mistake was found: from their experiment, it 
follows that the right-hand side must be positive. Its absolute 
value is still not clear, and the conclusion in [6] that it is equal 
to 0.88 is premature, although plausible. The signs of the 
partial derivatives in  (19) obtained in [8] have been 
confirmed by many other papers [9,10]. Hence, numerous 
experimental results support the findings of the present paper: 
the triple product rule is not valid. 
 In [11], it was shown that the first law of thermodynamics 
for an isobaric process is: 

     d d dQ U P V  ,               (21) 

and for an isochoric process: 

     d d dQ U V P                 (22) 

     (note that in this case, dQ is an exact differential), and the 
isobaric heat capacity is therefore equal to the isochoric one: 
CP = CV. The result of the present paper is further evidence 
that  (21) and (22) are true.   
In [12], it also was shown using a lot of experimental data that 
in heating of gases by compression, the isobaric and isochoric 
heat capacity are equal to each other, and they are equal to 

 VU T  . 
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