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 

Abstract: In this paper, the weighted average-based 
differential quadrature method is presented for solving 
one-dimensional homogeneous first-order non-linear parabolic 
partial differential equation. First, the given solution domain is 
discretized by using uniform discretization grid point. Next, by 
using Taylor series expansion we obtain central finite difference 
discretization of the partial differential equation involving with 
temporal variable associated with weighted average of partial 
derivative concerning spatial variable. From this, we obtain the 
system of nonlinear ordinary differential equations and it is 
linearized by using the quasilinearization method. Then by using 
the polynomial-based differential quadrature method for 
approximating derivative involving with spatial variable at 
specified grid point, we obtain the system of linear equation. Then 
they obtained linear system equation is solved by using the LU 
matrix decomposition method. To validate the applicability of the 
proposed method, two model examples are considered and solved 
at each specific grid point on its solution domain. The stability and 
convergent analysis of the present method is worked by supported 
the theoretical and mathematical statements and the accuracy of 
the solution is obtained. The accuracy of the present method has 
been shown in the sense of root mean square error norm  and 
maximum absolute error norm  and the local behavior of the 
solution is captured exactly. Numerical versus exact solutions and 
behavior of maximum absolute error between them have been 
presented in terms of graphs and the corresponding root mean 

square error norm  and maximum absolute error norm  
presented in tables. The present method approximates the exact 
solution very well and it is quite efficient and practically well 
suited for solving the non-linear parabolic equation. The 
numerical result presented in tables and graphs indicates that the 
approximate solution is in good agreement with the exact 
solution.  

Keywords: Non-linear parabolic equation, Burger equation, 
Differential quadrature method, weighted average, Stability and 
Convergent Analysis, Root mean square and Maximum absolute 
error. 
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The quasilinear parabolic partial differential equation is 
the simplest nonlinear model equation for diffusive waves. 
These nonlinear wave phenomena frequently appear in many 
domains of physics such as fluid dynamics [12]. This 
quasilinear parabolic equation is nonlinear parts of the 
advection-diffusion equation. The nonlinear 
advection-diffusion type equation is one of the popular and 
important models describing many phenomena derived from 
various areas of mathematical physics and engineering fields 
such as gas dynamics, hydrodynamics, shock waves[3], heat 
conduction [3], [23]. The first-order nonlinear parabolic 
partial differential equations model is nonlinear waves and 
which arise in gas dynamics, water waves, electrodynamics, 
chemical reactions, transport of pollutants flood, and 
ecological systems [8]. The nonlinear advection-diffusion 
type of equation represents the Burgers equation, the heat 
conduction equation [23], the nonlinear Schrödinger 
equation, the Navier–Stokes equation [3]. The Burgers 
equation is non linear partial differential equation of the 
conservation laws [8]. Burgers’ equation is a famous 

nonlinear evolution equation [1] that was introduced by 
Burgers in 1948 [9] during his work on the theory of 
turbulence.  But first, it was derived by Bateman [17] in 1915 
during his work on the motion of fluids. It has interesting 
properties of nonlinear advection [8]. The Burgers equation 
belongs to the class of Navier–Stokes equation [5], [7] is a 
fundamental partial differential equation from fluid 
mechanics [7]. Therefore, studying the solution of the Burgers 
equation will be helpful to solve the Navier-Stokes equations 
[8]. This equation can also be considered as a simplified form 
of the Navier-Stokes equation [5], [23] due to the form of the 
nonlinear convection term and the occurrence of a viscosity 
term [11].  Nonlinear Burger equation occurs in various areas 
of applied mathematics and physics, such as shock waves 
[1],[16],  dispersive water [16], turbulence [1, 4], modeling of 
gas dynamics, traffic flow, heat conduction [1],  [15], viscous 
flow [1],  acoustics  [2], and continuous stochastic processes 
[14]. 

First-order quasilinear parabolic partial differential 
equation plays a crucial role in applied mathematics and 
physics. The importance of obtaining the exact or 
approximate solutions for these PDEs in physics and 
mathematics is still a hot topic research area. For that purpose, 
different methods have been put forward for seeking various  
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exact and numerical solutions of multifarious physical models 
described using these nonlinear PDEs. A well-known model 
was first introduced by Bateman [17], who found its steady 
solutions, descriptive of certain viscous flows.  

It was later proposed by Burgers [9] as one of a class of 
equations describing mathematical models of turbulence. 
Khater et al. [12] proposed the Chebyshev spectral 
collocation method for solving the coupled Burgers’ 

equations. With pseudo-spectral methods care must be taken 
with the round-off error issue when higher derivatives or a 
large several points is involved. Gowrisankar, S., and 
Natesan, S. [7] present the numerical solution of singularly 
perturbed initial-boundary Burgers’ equation by using an 

efficient robust numerical method. They provide an 
e-uniformly convergent numerical method for the singularly 
perturbed Burger equation. They obtain uniform convergence 
concerning the perturbation parameter  . Even though the 
method is capable of approximating Burger’s equation, they 
failed to solve a relatively small perturbation parameter. Amit 
[6] Present solution of burger equation using seventh order 
convergent weakly L-stable Newton Cotes formula and 
application of Burger’s equation.  They used Hermit's 
interpolation polynomial approximation (oscillatory 
interpolation) and explicit backward Taylor’s polynomial 

approximation. Both Hermits interpolation and Taylor series 
method is computationally time-consuming for a large 
number of the grid point. So the solution is containing high 
contaminated round-off error and truncation error. Solomon 
et al. [3] presented a solution of the nonlinear 
advection-diffusion equation by a backward semi-Lagrangian 
method. The method is computationally difficult for a large 
number of grid points. Sachin [8] presents the numerical 
solution of the burger equation by using the Crank-Nicolson 
type method. This method is of computational cost because it 
requires a large number of grid points to give an accurate 
solution for the Burger equation. Reza Abazaria and 
Borhanifar [22] presented the solution of Burgers and 
coupled Burgers’ equation by using the differential transform 
method (DTM). DTM is a semi-numerical–analytic technique 
that formalizes the Taylor series differently. The Taylor series 
method is computationally time-consuming for large orders 
and high contaminated round-off error and truncation error. 
Jie Zhao et. al. [1] presents the numerical solution of the 
burger equation by using the Mixed Finite Volume Element 
Methods. This method is the high computational cost for a 
large number of the grid point. It means that as space size is 
decreasing, the complication of the method is increasing. So 
the accuracy of the solution is decreased. It was also difficult 
to apply this method to the complex solution domain. 

However, still, the accuracy of the method needs attention; 
because the treatment of the method used to solve the 
nonlinear parabolic partial differential equation is not trivial 
distribution. Even though the accuracy of the aforementioned 
methods needs attention, they require large memory and long 
computational cost. So the treatments of this method present 
severe difficulties that have to be addressed to ensure the 
accuracy of the solution. To this end, this paper aims to 
present an “Average Based Differential Quadrature Method 
along spatial direction and central finite difference scheme in 
the direction of temporal variable” that is capable of solving 

“One-Dimensional Homogeneous First Order Nonlinear 
Parabolic Equation which is called Burger equation” and 

approximate the exact solution. The fully discretization this 
present method leads the system of linear equations which is 
solved by using LU-matrix decomposition method. The 

convergence has been shown in the sense of L   norm and 

 norm so that the local behavior of the solution is captured 
exactly. The stability and convergence of the present method 
are also investigated (analyzed). 
Statement of the problem 

Consider that the following homogenous nonlinear 
parabolic partial differential equation  which is called 1D 
Burger equation considered in [1] given by: 

       

                                                 (1) 

with initial and boundary condition respectively 

, 

                           (2) 

where v>0 is the coefficient of kinematic viscosity, a>0  is 
diffusion coefficient,    and  assumed to 
be sufficiently smooth functions for the existence and the 

uniqueness of the solution [20], [24]. The solution  may 
represent a temperature for heat transfer or a species 
concentration for mass transfer at position x and time t with 
the advection velocity u [3].  Now we define a mesh size h and 
k and the constant grid point by drawing equidistance 
horizontal and vertical line of distance h and k respectively in 
h and  k’ direction. These lines are called gridlines and the 

point at which they interacting are known as the mesh point. 
The mesh point that lies at end of the domain is called the 
boundary point.  The points that lie inside the region are 
called interiors points. The goal is to approximate the solution 
‘  at the interior mesh points. Hence we discretized the 

solution domain as: 

   

                      (3)             

where  and   , 

 ,  .  and  are the maximum 
numbers of grid points respectively in the x and t direction. 
Then the present paper is organized as follows. Section two is 
a preliminary, Section three is a description of numerical 
methods, Section four is existence of solution,  Section five is 
Stability and convergence analysis, Section six is Results of 
numerical experiments. Section seven is Discussion and 
Section eight is the conclusion.  

II. PRELIMINARIES 

2.1. Differential Quadrature Method 

The differential quadrature method is one of the most 
efficient numerical methods to solve partial differential 
equations.  
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Different differential quadrature methods were developed by 
Bellman R. and Castiin in 1971 as cited in [25].  

A variety of methods have been developed based on the 
DQ method, including Radial basis based differential 
quadrature methods [28], the polynomial-based differential 
quadrature (PDQ) and the Fourier-expansion-based 
differential quadrature methods (FDQ) [25]. The basic idea 
behind the DQ method is to determine the weighting 
coefficients for any order derivatives by using a weighted sum 
of functional values at a set of selected grid points [26]. PDQ 
and FDQM are highly efficient methods by using a small 
number of grid points, they are not efficient when the number 
of grid points is large and they are also sensitive to grid point 
distribution. While the PDQ and FDQ methods can obtain 
accurate results using only a small number of grid points, they 
are mesh-based methods [28], [30]. Hence in particularly we 
use Lagrange interpolation polynomial basis for 
polynomial-based differential quadrature method to discretize 
partial derivative involving with spatial variable associated 
with a weighted average and obtain numerical scheme for 
present works.  These Lagrange interpolation polynomial 
bases given by: 

                      (4) 

where    and the denominator and nominator 
product function for this basis defined on the specific grid 
point defined in Eq.(3) are given by:        

   
  

     2.2. Weighted average scheme 
We have now considered two finite difference methods, 

which differ only in that one approximates the second space 
derivative by three points on the old time level,  and the 

other uses the three points on the new time level,  [32].  
A natural generalization is to an approximation which uses all 
six of these points. This can be regarded as taking a weighted 
average of the two formulae. See [23], [32],[ 33]. 

III. NUMERICAL METHODS 

3.1 The Temporal discretization 

Assuming that  has continuous higher order 

partial derivative on the region   .  By using 
Taylor series expansion, we have: 

 

    (5) 

Subtract the second equation from the first equation, the 
central difference equation of derivative of displacement 
function concerning temporal variable at the 

point : 

                              (6) 

Where  local truncation error is the 

term for the discretization of temporal derivative. Now 
cutting this local truncation error from Eq. (6) and substituting 
the result to given PDEs in Eq. (1) associated with the 
weighted average in time of remaining terms we obtain the 
semi-discretization of the form:        

 

 

 

 

 

          , ,         

                                              (7) 

where   and  is the solution of the 

above differential equation at the time step. 
Since Eq.(7) is a non-linear system of difference equation.  So 
we linearize the non-linear problem in Eq. (7) by using the 
quasilinearization process which yields the following 
difference equation. For the initial condition of the above 
equation , by quasilinearization process, 
this problem becomes: 
     

 

with the boundary and initials condition respectively 

, ,             

                                                              (8) 

where initial guess and  is the iteration index. Let 

 in the above equation we obtain 

 

with the boundary  and initials condition respectively 

           , ,        

                                                                     (9) 
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For the sake of simplicity, dividing both side of Eq.(9) by 
 and  by letting  

,  

                                                                                          (10) 

Now substituting Eq. (10) into Eq. (9) we obtain: 

                                                                 (11) 

Now let us consider that  

and  for which   and  are the lower 

boundaries of  and  respectively for 

all . Hence Eq. (11) can be written as: 

                                  (12) 

with its initial and boundary  conditions respectively  

 , ,      

                                                                     (13)    

where   is difference operator which is defined on 
difference scheme in Eq. (11) which is given by:                                                                                                                                                       

 

3.2 The spatial discretization  

From the primary idea of the differential quadrature 
method,   and   in Eq. (1) can be expressed as 
a linear combination of functional values at each grid point. It 
is given as: 

                                                                                         (14) 

 where  and  represent the weighting coefficients 

[25, 26, 27, 28] for  
Hence by using the basis function in Eq. (4), the weighting 

coefficients of the first and second-order  partial  are 

respectively calculated by as in [26, 27]: 

 , for  and  

 ,  . 

  ,        

and     ,  .    

Since we assuming  .Thus using this obtained 
weighting coefficient and substituting Eq.(14) into Eq.(11), 
the full discretization of given non-linear parabolic partial 
differential equation in Eq.(1) is: 

      

  ,                                     (15) 

Thus using the discrete scheme in Eq.(15) , we obtain the 
desired solution for non-linear parabolic partial differential 
equation in Eq.(1). 

IV. EXISTENCE  OF UNIQUE AND  CONTINUOUS 
SOLUTION 

The following lemmas [18], [29] are necessary for the 
existence and uniqueness of the solution and for the problem 
to be well-posed. 

Lemma 1. Maximum principle [18]. Assume that any 
function satisfies  

and . Then, for all  

implies that for all .       Proof: 

Let  and  be any number such 

that  and suppose 

that . It is clear that .Therefore we 

have ,  and 

 
  Since  for all . 

Therefore , which contradicts the 

assumption, therefore it follows that    . Hence  

 for all .       

Lemma 2. [23], [29]  Let  be the smooth 
continuous solution of Eq. (11), there exists a constant C such 
that      

                           For all    and  

             

For all ,  

Proof: 

Defining the barrier function 
 such that , 

 and C are constant sufficiently become large. 

That  for , using maximum 

principle for   we have:  

    For . 

Hence   for all . Now, we 

find the bound of the derivatives of  by the use of 
induction. Theorem 2 in [21] can be extended 
for . So, the proof is similar to the prove 
in ref. [21].  
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Lemma 3. [29](Continuous minimum principle). Assume 
that any function satisfies  

and . Then,  for all  

implies that for all .  
Proof: See (29). 

The uniqueness of the solution is implied by this 
maximum and minimum principle. Its existence follows 
trivially (as for non linear problems, the uniqueness of the 
solution implies its existence). This principle is now applied 
to prove that the solution of Eqs. (1)- (2) is bounded. 

V. STABILITY AND CONVERGENCE ANALYSIS     

Lemma 4. [23] Under the assumption that all the 
coordinates are in the interval h (i.e. uniform mesh with length 

h), and the  order derivative of the function  is 
bounded as in Lemma 2, which is given,by:                             

 

                                                   (16) 

Proof. Since we approximate the function  in 
domain concerning with spatial variable by using Lagrange 
interpolation basis function in order to approximate its 
derivative Hence using this basis function in Eq. (4)  and   
differentiate it concerning x, we obtain 

 

M terms and Appling matrix norm on both sides we obtain 

  

                                                                 (17) 

Let   where . Similarly, 

we have    for all  and 

 .Now by using this expiration we have: 

           Therefore by using the theory of Lagrange’s Interpolation 

error estimate, we have 

                              

                                                                                                                                                                                                                                                                                                                                        

                                                                          (18) 
Now substituting Eq. (18) into Eq. (17) we obtain: 

 

Similarly for the second derivative we have: 

 

For  derivative, by using induction we have: 

                                                                          (19) 

Hence the derivative of  and the error in the 
approximating of functions are bounded.  

Lemma 5. If the error for the  order derivative 
approximation is defined as 

   ,      

                                                      (20) 

Where  is the approximation of  a polynomial of 

degree M-1, then  

                              and  

 

 

Proof: The prove this lemma 5 is in [23] 

Theorem 1. [23] Let   be a solution of Eq.(10) and 

 be a solution  of the full discretized problem in Eq.(15) at 

  in temporal direction, then : 
         

                                (21) 

Where denote the discrete maximum norm. 

Proof: Let   be a solution of Eq.(10) and  be 

a solution  of the full discretized problem in Eq.(15) at point 

Now subtracting Eq(11) from Eq.(15) the error term 

is: 

 

Since and   are a bounded sequence of the term. Now 
using this idea and   Lemma 5 we have: 
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Corollary 1: Under the condition of the above theorem the 
proposed scheme is given in Eq. (15) is a well-posed scheme with 
the given initial and boundary condition. 

Proof: Let  and  are the exact and numerical 

solution of PDE in Eq.(1) at grid point . Then the global 

error at the initial condition  is defined by  

 .By using the condition of the above 

theorem 5 and Lemma 5. we have: 

 

Hence the scheme is well-posed at  for the initial 

condition. For  and , Then the global error is  

                          

 

Hence   and bounded, Thus scheme is stable. 

Thus it is well-posed. So it is convergent. 

Criteria for Investigation the Accuracy of Proposed  

In this section, we investigate the accuracy of the present 
method. To show the accuracy of the present method, the Root 
Mean Square (RMS) error norm (L2) and maximum absolute error 
norm (L∞) are used to measure the accuracy of the proposed 

method. The RMS error and maximum absolute error are calculated 
as in the ref. [6] given by: 

,    

| 

Where  and   are respectively exact and 

numerical solutions of the non linear parabolic equation at the grid 

point  

VI. RESULTS OF  NUMERICAL EXPERIMENTS 

To test the validity of the proposed method, we have considered 
the following model problem. 

Example 1. Consider that the following homogenous 1D non 
linear parabolic equation (Burger equation) considered in [1] given 
by: 

                ,  

                                                                                                                       

with initial and boundary condition respectively  

            ,     

 

The unique exact solution of the above Burger’s equation is given 

by :           

 

where  and 

, 

 

Example 2: Consider the in Eq. (1) on [0, 1] considered by 
Amit Kumar Verma et.al.  in [6]  

The unique exact solution of the above 1D non linear parabolic 
equation (Burger equation)  is given by:         

 

 

 

 

Table 1 Comparison of maximum absolute error norm  and convergence orders for problem give in example one with 
computations carried out until final time T = 2 with different mesh size. 

h k  Order  Order 

Present Method 
1/20 1/20 2.12402E-09 0.9236 5.95194E-09 0.92114 
1/40 1/40 1.64798E-09 0.9239 1.61781E-09 0.96701 
1/80 1/80 2.48655E-09 0.93876 2.56165E-10 0.9754 
1/160 1/160 2.2706E-10 0.93991 3.74816E-10 0.97644 
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By Jie Z.  et.al.  in [1] 
1/20 1/20 2.6767E - 02  2.1361E - 02  
1/40 1/40 1.4241E - 02 0.9104 1.1424E - 02 0.9029 
1/80 1/80 7.4366E - 03 0.9374 5.9368E - 03 0.9444 
1/160 1/160 3.8548E - 03 0.9480 3.0320E - 03 0.9694 
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Fig. 1. Physical behaver numerical solution of Example 1 for h=k=1/20 and v=1/48
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Table 2. Comparison of Root Mean Square (RMS) error norm L2 and maximum absolute error norm L∞  for problem of example two 

with computations carried out until different final time and step-length  , and fixed time step  for v= 0.002. 
Mesh size By SS Xie  [29] By Amit  in[11] By present method 

With computations carried out until final time T = 1.7 

h k L∞ L2 L∞ L2 L∞ L2 

0.0005 0.01 2.9704E-02 3.5936E-03 5.02E-04 1.67E-05 3.2901e-11 2.3613e-12 

0.01 0.1     1.638e-012 4.2081e-013 

With computations carried out until final time T = 3 

0.0005 0.01 1.9009E-02 2.635E-03 2.1289E-4 8.14E-05 1.8124e-14 6.2127e-15 

0.01 0.01     1.7182e-14 5.9144e-15 

With computations carried out until final time T = 4 

0.0005 0.01     9.9107e-15 3.5461e-15 

0.01 0.1     9.4831e-15  3.4040e-15 
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VII. DISCUSSION  

In this paper, weighted average based differential 
quadrature method is presented for solving one-dimensional 
homogeneous first-order non-linear parabolic partial 
differential equation (the Burger equation). To demonstrate 
the competence of the method, two model examples are 
solved by taking different values for step size h, and time step 
k.  Numerical results obtained by the present method have 
been associated with numerical results obtained by the 
method in [1], [6], [31] and the results are summarized in 
Tables and graph. Moreover, in the present numerical 
computation, the result presented in Table 1 shows that   Both 
root mean square error norm (L2) and maximum absolute 
error norm (L∞)  are incases as the number of mesh point M 
and N increases in both directions. In this case, the accuracy 
of the present method increases and it’s superior to 

pre-existing. Again the result presented in Table 2 is also 
shows that   Both root mean square error norm (L2)  and 
maximum absolute error norm (L∞) incases rapidly as the 
number of mesh points M decrease spatial direction and fixed 

grid number N temporal direction. In this case, the accuracy 
of the present method is rapidly increases. Hence the present 
method is superior to the methods that exist in literature 
review. Further, as shows in Figs. 1- 12,   the  

proposed method approximates the exact solution very 
well for different values of step length  and time step  .To 
further verify the applicability of the planned method, graphs 
were plotted aimed for solution of Examples 1 and 2 as exact 
solutions versus the numerical solutions obtained by the 
present method showed by figs   3, 7, and 12 respectively 
indicate good agreement of the results, and proves the 
reliability of the present method. Also, Figs. 4, 8, and 11 are 
specifying the behavior of absolute error obtained by the 
present method within the effects of mesh sizes on the 
solution domain. 
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 Hence, the numerical results presented in this paper 
validate the improvement of the proposed method over some 
of the existing methods described in the literature. Both the 
theoretical and numerical error bounds have been established. 
The results in the Tables are further confirmed that the 
computational rate of convergence and theoretical estimates 
are in agreement.   

However the  comparison among Table 2-Table 2 and the 
graphs of the numerical versus exact solution of 
one-dimensional Burger equation shows that the present 
method generates a more accurate result and it is superior to 
the method developed in [1],[6], [31] and It is approximate 
the exact solution very well.  

VIII. CONCLUSION  

A new approach, the weighted average based differential 
quadrature Method is using to solve the one-dimensional 
non-linear parabolic partial differential equation (Viscous 
Barger equation) numerically is presented in this study. 
Generally the comparison of the results obtained by the 
present method with other methods reveals that the present 
method is more convenient, reliable, and effective. 
Theoretical and mathematical error analysis is also developed 
in this study. As it can be seen that, the accuracy improves 
when the number of grid points is large. In a summary, the 
weighted average-based differential quadrature Method is a 
reliable method that is capable to solve the one-dimensional 
non-linear parabolic partial differential equation. Based on 
the findings, this method is well approximate and gives better 
accuracy of the numerical solution with a fixed time step,  

and large step size . 
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